Name:

In this lab you will work through exercises 3.3.13-3.3.17. You may work in groups of 2-3, but each student should fill out their own worksheet. No formal report is due for this exploration.

1. Recall Fermat's Little Theorem. State it below.

2. Let n be a positive integer. Consider integers m such that $1 \le m \le n$ and such than m and n have no common prime factors. The number of such integers m is denoted by $\phi(n)$.

Find $\phi(n)$ for all integers $n = 1, 2, 3, \dots, 14$. Fill in the table below. (Probelm 3.3.13).

п	1	2	3	4	5	6	7	8	9	10	11	12	13
$\Phi\left(n ight)$	1	1											

3. What is $\phi(p)$ when p is a prime? Make a conjecture. (Problem 3.3.13)

4. State Euler's Theorem. (Problem 3.3.14)

<i>p</i> 1	p_2	<i>p</i> 1 <i>p</i> 2	$\Phi\left(p_1p_2\right)$
2	3	6	2
2	5	10	
2	7	14	
3	5		
3	7		

5. Suppose $m = p_1 p_2$ where p_1 and p_2 are two distinct primes. What is $\phi(m)$? Explore and make a conjecture. (Problem 3.3.15)

6. Applications. (Problems 3.3.17-3.3.19) Use your conjecture in the previous problem to:
(a) Find the remainder of 14⁸¹ when divided by 15.

(b) Find the remainder of 10^{100} when divided by 21.

(c) Find the remainder of 2^{1003} when divided by 33.