Consider the matrices A and B below. The matrices R_A and R_B are the reduced row echelon forms of A and B respectively.

A =	$ \begin{pmatrix} 1 & 2 & 1 & 3 & 1 \\ -1 & 1 & 2 & 5 & 4 \\ 2 & -1 & -3 & 1 & 2 \\ 3 & 4 & 1 & 1 & -3 \end{pmatrix} $	$R_A =$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{array}{ccc} -1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{array}$	$\begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}$
B =	$ \begin{pmatrix} 1 & 2 & 1 & 3 & 1\\ -1 & 1 & 2 & 5 & 4\\ 2 & -1 & -3 & 1 & 2\\ 3 & 4 & 1 & 1 & 2 \end{pmatrix} $	$R_B = \left(\begin{array}{c} \\ \end{array} \right)$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{array}{ccc} -1 & 0 \\ 1 & 0 & - \\ 0 & 1 \\ 0 & 0 \end{array}$	$\begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}$

The purpose of the exercise is to determine what information R_A (and R_B) tell us about the subspaces associated with A (resp. B).

- 1. Recall that the elementary row operations do not change the span of the row vectors of a matrix.
 - (a) What does this imply about the row space of A and the row space of R_A (or the row space of B and the row space of R_B)?
 - (b) Use this information to find a basis for the row space of A and the row space of B.
- 2. Recall that elementary row operations do not change the dependency relations among the columns of a matrix. (That is why we can use the reduced row echelon form to determine dependency relations among column vectors.)
 - (a) Look at the column vectors of R_A and choose a basis for the column space of R_A from among those columns.
 - (b) Use this information to determine a basis for the column space of A.
 - (c) Use the same strategy to determine a basis for the column space of B.
- 3. Recall that the null space of a matrix M is the set of all vectors v such that Mv = 0. Applying elementary row operations to the augmented matrix (M|0) is equivalent to multiplying both sides by elementary matrices.
 - (a) What does this imply about the null space of a matrix and the null space of its reduced row echelon form?
 - (b) Describe the vectors in the null space of R_A entry-wise. Determine a basis for the null space of R_A and the null space of A.
 - (c) Use the same strategy to determine a basis for the null space of B.
- 4. What are the dimensions of the row spaces, column spaces, and null spaces of A and B? What pattern(s) do you notice? Will these patterns hold in general? Why or why not?