Group 1	Group 2	Group 3
(5,5)	(5,0)	(9,3)
(-6, -5)	(7, 4)	(-1,3)
(-4, -8)	(-4, -3)	(9,7)

- 1. Lay your sheet of regular graph paper over your sheet of u-v graph paper, and estimate the values of scalars α and β such that $\alpha u + \beta v = w$ for each vector w assigned to your group in the chart above.
- 2. Now let u = (3, 1) and v = (-1, -2). Find exact values for the scalars α and β such that $\alpha u + \beta v = w$, for each vector w.

3. Consider an arbitrary vector w = (x, y). Derive formulas for α and β in terms of x and y.

4. Now let u = (1,3), v = (-2,-6). What goes wrong geometrically if you try to write w as a linear combination of u and v? What goes wrong algebraically?