Let W be a subspace of \mathbb{R}^n . The goal of this activity is to show that the orthogonal complement W^{\perp} is a subspace of \mathbb{R}^n .

A few things to get you started ...

1. State the definition of W^{\perp} .

2. State the definition of a subspace of \mathbb{R}^n .

3. To show that W^{\perp} is a subspace of \mathbb{R}^n , what, specifically, will you have to show?

Let W be a subspace of \mathbb{R}^n . The goal of this activity is to show that the intersection of W and its orthogonal complement W^{\perp} is $\{0\}$.

A few things to get you started ...

1. State the definition of W^{\perp} .

2. If v is in both W and W^{\perp} , what can you say about v?

Let W be a subspace of \mathbb{R}^n . The goal of this activity is to show that if W is the span of a set $\{w_1, \ldots, w_k\}$ of vectors in \mathbb{R}^n , then v is in W^{\perp} if and only if $v \cdot w_i = 0$ for all $i = 1, \ldots, k$.

A few things to get you started ...

1. State the definition of W^{\perp} .

2. State the definition of the span of a set of vectors.

3. Break down the "if and only if" statement into two statements. Which one will be easier to show?