Name: _____

Section: _____

Exercises.

1. Identify each limit below as an indeterminate form (like $0/0, \infty/\infty$, or $0 \cdot \infty$) and then use L'Hospital's Rule to evaluate the limit.

(a)
$$\lim_{x \to 1} \frac{\sin(x-1)}{x^2 - 1}$$

(b) $\lim_{x \to 0^+} x^2 \ln(x)$

2. Exponential vs. polynomial growth. Both $f(x) = e^x$ and $P(x) = x^n$ (where *n* is a positive integer) grow indefinitely as *x* increases. In this exercise we will see that exponential growth always eventually outstrips polynomial growth.

Use L'Hospital's Rule to evaluate the limits:

(a)
$$\lim_{x \to \infty} \frac{x}{e^x}$$

~

(b)
$$\lim_{x \to \infty} \frac{x^2}{e^x}$$

(c)
$$\lim_{x \to \infty} \frac{x^3}{e^x}$$

(d)
$$\lim_{x \to \infty} \frac{x^4}{e^x}$$

Let *n* be any positive integer. What do you think $\lim_{x\to\infty} \frac{x^n}{e^x}$ is? Explain.