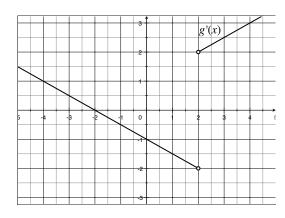
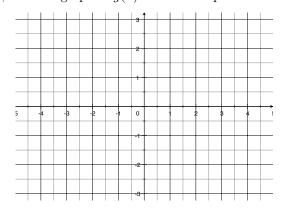

Name:	Section:
Names of collaborators:	
1. Overview	
Increasing and Decreasing: The <i>first</i> derivative original function. (See p 290.)	gives increasing/decreasing information about the
$f'(x)$ positive \longrightarrow slope of the tangent is positive	ive $\longrightarrow f(x)$ is
$f'(x)$ negative \longrightarrow slope of the tangent is negative	ative $\longrightarrow f(x)$ is
The only places where f can switch from increasing	to decreasing are when $f'(x) = 0$ or $f'(x)$ DNE.
	v critical numbers, because critical numbers have to be the from increasing to decreasing at $x = 0$, but $x = 0$ is n of f .
f'(x) negative to the left of c , $f'(x)$ positive to	o the right of $c \longrightarrow \text{local}$ at c
f'(x) positive to the left of c , $f'(x)$ negative to	o the right of $c \longrightarrow \text{local}$ at c
If the sign of the derivative is the $same$ on both side at c . This way of checking the critical numbers is ca	es of c , then there is neither a local min nor a local max alled the first derivative test.
Concavity: The <i>second</i> derivative gives concavity in	nformation about the original function. (See p 293.)
1. $f''(x)$ positive $\longrightarrow f(x)$ is concave	
2. $f''(x)$ negative $\longrightarrow f(x)$ is concave	
The only places where f can switch concavity are w	hen $f''(x) = 0$ or $f''(x)$ DNE.
Inflection Points : A point (x, y) on the graph of y and switches concavity at x . (Note that an inflection	f(x) is called an <i>inflection point</i> if f is continuous at x in point is a <i>point</i> with an x -value and a y -value.)
	t x , that does not mean it will have an inflection point ity at $x = 0$, but $f(x)$ is undefined at $x = 0$, so there is
Local Maxima and Minima Revisited: Anothe max/min occurs there, is by checking concavity inst derivative test. You can do this as long as $f''(c)$ exist	ead of increasing/decreasing. This is called the <i>second</i>
$f''(c)$ positive $\longrightarrow f$ concave up at $c \longrightarrow local$	at c
$f''(c)$ negative $\longrightarrow f$ concave $down$ at $c \longrightarrow le$	ocal at c


2. Exercises

1. Consider a function f(x) whose graph is below.



- (a) On what intervals is f(x) increasing?
- (b) State the local minimum and local maximum values of f, along with their locations.
- (c) On what intervals is f(x) concave upward?
- (d) What are the of the inflection points of f(x)? (Make sure to include both x and y-coordinates.)
- 2. Consider a function F(x) whose derivative is graphed above, in Exercise 1, i.e. F'(x) = f(x).
 - (a) On what intervals is F(x) increasing? Explain.
 - (b) At what values of x does F(x) have a local maximum or minimum? Explain.
 - (c) On what intervals is F(x) concave upward? Explain.
 - (d) What are the x-coordinates of the inflection points of F(x)? Why?

3. Suppose g(x) is a continuous function whose derivative is shown below.

- (a) On what intervals is g(x) increasing? Decreasing?
- (b) At what values of x does g(x) have a local maximum? Local minimum?
- (c) On what intervals is g(x) concave upward? Concave downward?
- (d) What are the x-coordinates of the inflection points of g(x)?
- (e) Assuming that g(0) = 0, sketch a graph of g(x) on the axes provided.

4. Consider $f(x) = 5 - 3x^2 + x^3$. Find the intervals of increase and decrease, local maximum and minimum values, the intervals of concavity, and the inflection points. (See Example 6, p 295.)

5. Consider $f(x) = \sin x + \cos x$. Find the intervals of increase and decrease, local maximum and minimum values, the intervals of concavity, and the inflection points.