Name: Solutions

Section: _____

You have 30 minutes to complete the following problems, without using your notes, book, or calculator.

Part 1: Algebraic and Exponential Functions

1. Classify each function given below, by circling the appropriate name or names.

(a) $f(x) = 2^x$

root power polynomial exponential

(b) $g(x) = x^5$

(rational) (power) root (polynomial)

so it is rational.

(c) $h(x) = \frac{x}{2x-1}$

(algebraic) power (rational) root

(d) $Q(t) = t^{1/4}$

(power) (root) exponential rational

(e) $P(x) = x^3 - 6x + 4$

linear power (algebraic) polynomial)

2. State the domain of each function from the previous problem.

(b) <u>(-∞,∞)</u>

(e) $(-\infty, \infty)$

(c) $(-\infty, \frac{1}{a}) \cup (\frac{1}{2}, \infty)$ \leftarrow Since, if $x = \frac{1}{2}$, denom, would be zero.

 \leftarrow Since $t'^{1/4} = \sqrt[4]{t}$, and it

is impossible to get a negative number after raising to the 4th power.

3. Find a formula for a linear function f(x) whose graph passes through (3,1) and has a slope of 2.

$$y - 1 = 2(x-3)$$

$$y = 2x - 6 + 1$$

$$y = 2x - 5$$

4. Find a formula for an exponential function Q(t) whose initial value is Q(0) = 27 and which decreases by one third for every unit time: Q(1) = 9, Q(2) = 3, etc.

Part 2: Trigonometry

5. Fill in the following table, using the five standard angles in the first quadrant.

Ang	gle, θ	$\sin \theta$	$\cos \theta$	an heta
D	0	0	l	0
30	75/6	1/2	$\sqrt{3}/2$	1/13
45	T/4	V2/2	12/2	l
60	m/3	V3/2	1/2	13
90	17/2	l	0	

6. Evaluate the function at the given value.

(a)
$$\cos(-150^{\circ}) = \frac{-\sqrt{3}}{2}$$

(b)
$$\sec(\frac{5\pi}{3}) = 2$$

Part 3: Logarithms

7. Find the exact value of the given quantity:

(b)
$$\ln(e^3) = 3$$

(c)
$$e^{-3\ln 2} = \frac{1/8}{2}$$

$$(e^{\ln 2})^{-3} = 2^{-3} = \frac{1}{2^3}$$

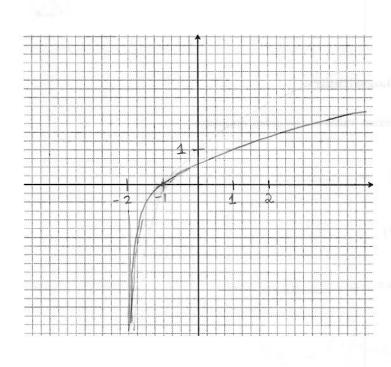
8. Express $\ln 4 - \ln 5 + 3 \ln 3$ as a single logarithm: (Show your work below.)

$$ln(\frac{4}{5}) + ln(27)$$

 $ln(\frac{4.27}{5}) = ln(\frac{108}{5})$

9. Consider the function $f(x) = \ln(x+2)$. Give the domain, range, and x-intercept in the spaces provided, and sketch the graph on the axes provided. Make sure to provide scale on each axis.

Domain: $(-2, +\infty)$


 $\chi+2>0$ $\chi>-2$

Range:

x-intercept: $\chi = -1$

 $0 = \ln(x+2)$ 1 = x+2

-1 = x

Part 4: Inverse Functions and Inverse Trig Functions

10. Determine whether each function is one-to-one. If it is one-to-one, sketch a graph of its inverse on the same set of axes.

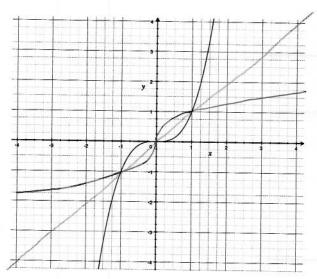
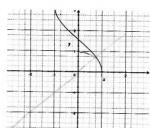


Figure 1: Is this function one-to-one?(Y)N

Figure 2: Is this function one-to-one? Y/N

 $h(x) = \sec(x)$ $r(x) = \arctan(x)$

11. Find the exact value of the given quantity:


(a)
$$\cos^{-1}(\frac{\sqrt{3}}{2}) = \frac{\Pi/\ell_{\ell}}{\ell_{\ell}}$$

(b)
$$\tan^{-1}(1) = \frac{\pi/4}{4}$$

(c)
$$\arcsin(0) = \bigcirc$$

12. The graph of which function is depicted below?

$$f(x) = \arcsin(x)$$
 $g(x) = \cos^{-1}(x)$

Part 5: Composition of Functions

13. Find formulas for the functions $f \circ g$ and $g \circ f$, where

$$f(x) = 2x + 3$$
 and $g(x) = \sin x$

$$(f \circ g)(x) = 2\sin x + 3$$

$$(g \circ f)(x) = \underline{Sin(2x + 3)}$$

14. Express the function in the form $f \circ g$.

(a)
$$F(x) = (x-2)^2$$

$$f(x) = \chi^2$$

$$g(x) = \underline{\chi - 2}$$

(b)
$$G(x) = \tan^2(x)$$

$$f(x) = \frac{\chi^2}{}$$

$$g(x) = \frac{+an \ \chi}{}$$

(c)
$$H(x) = \frac{2x}{2x-3}$$

$$f(x) = \frac{\chi}{\chi - 3}$$

$$g(x) = 2x$$