Math 114, Prep 9.1 (Intro to Differential Equations)

Name: Section:

Names of collaborators:

Main Points:
1. qualitative analysis of differential equations

2. families of solutions of differential equations

1. Qualitative Analysis of Differential Equations

When a quantity A is directly proportional to a quantity B, that means that there is a positive constant,
say k, such that A = kB.

A simple model for population growth operates under the assumption that a population will grow at a rate

directly proportional to the size of the population. In other words % is proportional to P. How would we
write this in an equation?

dP

e kP (for some k > 0)

This is an example of a differential equation. Any function P(t) that satisfies this equation is called a
solution to the differential equation. What can we determine about P without a formula for P? It turns
out that we can determine quite a lot!

Exercises.
1. Consider the differential equation modeling population growth given above.

_ ;o dP
(a) If P =0, what is %7

Explain what this means in terms of the population growth by finishing the following sentence:
“If the population is zero, its growth rate is ..., which means ....”

dP o

(b) If P> 0, what can you say about -7

Explain what this means in terms of the population growth by finishing the following sentence:
“If the population is ..., its growth rate is ..., which means ....”

. P
(c) If P <0, what can you say about -7

Explain what this means in terms of the population growth by finishing the following sentence:
“If the population is ..., its growth rate is ..., which means ....” (Does this make sense?)
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2. Read p 581 for a more refined model of population growth, one which takes into account the fact that
there are limited resources, and a population cannot grow indefinitely.

(a) Write down the differential equation that models population growth under ther assumption that
there are limited resources.

(b) When is % = 0?7 Interpret this in terms of population growth.

(c) When is 2€ > 07 Interpret this in terms of population growth.

(d) When is ‘fi—f < 07 Interpret this in terms of population growth.

(e) Suppose k =3 and M = 100. Sketch the graphs of several functions P(t) that satisfy the
differential equation. (See Figure 3.) What are the equillibrium solutions?
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(f) (Challenge!) Graph ‘fi—f as a function of P (instead of as a function of ¢). (This should be a
parabola.) At what P-value does % have a maximum? What does this mean in terms of

population growth?

2. Families of solutions

A differential equation relates an unknown function and one or more of its derivatives. A solution to a
differential equation is a function that satisfies the differential equation. Read about “General Differential

Equations” on pages 582-584.
Exercises
3. Consider the differential equation 2y’ + zy = 1.

(a) Show that every member of the family y = (In(x) + C')/z is a solution of this differential
equation. (See Example 1.)

(b) Tlustrate by graphing several members of the family of solutions on a common screen. (Use
Mathematica or a graphing calculator.) Sketch your results below.

(¢) Find a particular solution that satisfies the initial condition y(1) = 2. (See Example 2.)
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(d) Find a particular solution that satisfies the initial condition y(2) = 1.

4. Consider the differential equation v/ = x3.

(a) What can you say about the graph of a solution when z is close to 0?7

What if z is large?

~1/2

(b) Verify that all members of the family y = (c — z?) are solutions of the differential equation.

(¢) Graph several members of the family of solutions on a common screen. Do the graphs confirm
what you predicted in part (a)?

(d) Find a solution of the initial-value problem:



