
Math 114, Prep 11.6 (Absolute Convergence)

Name: Section:

Names of collaborators:

Main Points:

1. absolute, conditional convergence

2. ratio test

1. Absolute Convergence

Given a series
∑

an with positive and negative terms, we may consider the related series
∑
|an|. It is a

non-trivial, but true, fact that if this series converges, then the original series must converge. In this case
we say that the original series converges absolutely. If a series converges, but not absolutely, we say that it
converges conditionally.

To recap: a series
∑

an converges absolutely if
∑
|an| converges, but

∑
an converges only conditionally if∑

an converges but
∑
|an| diverges.

An example of an absolutely convergent series is a geometric series with −1 < r < 0, like

∞∑
n=1

(
−2
3

)n−1

= 1 − 2

3
+

4

9
− 16

27
+ . . .

An example of a conditionally convergent series is the alternating harmonic series:

∞∑
n=1

(−1)n−1

n
= 1 − 1

2
+

1

3
− 1

4
+ . . .

Exercises.

1. Consider the series

∞∑
n=1

(
−3
5

)n−1

.

(a) Does this series converge? Why or why not?

(b) Now consider the related series
∑
|an| (where an are the terms of the original series.) Does this

series converge? Explain.

(c) Is the original series absolutely convergent, conditionally convergent, or divergent?
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2. Consider the series

∞∑
n=1

(
−6
5

)n−1

.

(a) Does this series converge? Why or why not?

(b) Now consider the related series
∑
|an| (where an are the terms of the original series.) Does this

series converge? Explain.

(c) Is the original series absolutely convergent, conditionally convergent, or divergent?

3. Consider the series

∞∑
n=1

(−1)n√
n

.

(a) Does this series converge? (Use the Alternating Series Test.)

(b) Now consider the related series
∑
|an| (where an are the terms of the original series.) Does this

series converge?

(c) Is the original series absolutely convergent, conditionally convergent, or divergent?
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2. The Ratio Test

Exercises

4. State the Ratio Test (top of page 734.)

5. Determine whether the following series converge absolutely, converge conditionally, or diverge.

(a)

∞∑
n=1

e−n n!

(b)

∞∑
n=1

(−1)n−1 2n

n4
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(c)

∞∑
n=1

(−10)n

n!

(d)

∞∑
n=1

sin(4n)

4n

(Hint: Instead of using the Ratio Test, show
∑

an converges absolutely by considering
∑
|an|

and using the Comparison Test to show that this series converges.)
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