Math 114, Power Series Lab

Name: Section:

Names of collaborators:

Main Points:
1. Use Mathematica to graph partial sum functions.

2. Notice the significance of radius of convergence.

Exercises.

o0
1. Recall that Z z™ is a function with domain (—1,1). Using the formula for the sum of a
n=1
convergent geometric series,

1 o0
7 = Ex’L:1+x+x2+x3+... (for —1<x<1)
-z

n=0

(a) Write out the first five partial sum functions. (The first three are done for you.)

so(z) = 1

si(z) = 1+u=

so(z) = 1+ax+2°2

s3(x) =

sa(z) =

What is the degree 10 partial sum function?

810(56) =
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(b) Use Mathematica to plot f(x) and each of the partial sum functions in (a) on a common set of
axes. Start by plotting f(z) and so(x) together:

Plot[{1/(1-x), 1}, {x, -2, 2}, PlotRange -> {-6, 6}]

Note that this command sets the z-limits of the viewing rectangle to be —2 and 2, and it sets
the y-limits of the viewing rectangle to be —6 and 6. You can change the viewing rectangle by
changing the x or y-limits in the Plot command.

Then plot g(z) and s1(z) together:
Plot[{1/(1-x), 1+x}, {x, -2, 2}, PlotRange->{-6, 6}]

Do the same for each of the partial sum functions s3(z), ..., ss(x), as well as s19(z).

(c¢) For what z-values does sg(z) give a good approximation of f(x)? What about s;(x)? so(z)?
etc. Fill in the table to show the range of z-values for which s, (z) approximates f(z) well. Do
your answers make sense, given the domain of the power series?

x-range for s,

Alwliv|l—klo]3

oo
D(x—1)"
2. Consider the function given by the power series Z %

n=0

(a) What is the center of this power series? a =

(b) Use the Ratio Test to find the radius of convergence of the series.
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(c) Write out the first five partial sum functions. (The first three are done for you.)

(SIS

so(z) =

si(z) = 3+3(@-1)

sa(x) = L4+3(@—1)+2(z—1)

s3(x) =

sq(z) =

What is the degree 10 partial sum function? Use the Sum command in Mathematica to help you.
Sum[((n+1) (x-1)"n) /(2" (n+1)), {n, 0, 10}]

810(.%‘) =

(d) In Section 11.9, we will learn how to show that this power series agrees with the function
g(z) = 2/(3 — x)? on its interval of convergence. Use Mathematica to plot g(x) and each of the
partial sum functions in (a) on a common set of axes. Start by plotting g(x) and sg(z) together:

Plot[{2/(3-x)"2, 1/2}, {x, -2, 4}, PlotRange -> {-2, 5}]
Then plot g(z) and s;(z) together:
Plot[{2/(3-x)"2, 1/2+(1/2) (x-1)}, {x, -2, 4}, PlotRange —-> {-2, 5}]

Do the same for each of the partial sum functions s3(z), ..., ss(x), as well as s19(z).

(e) For what z-values does sg(z) give a good approximation of g(x)? What about s1(x)? sa(x)?
etc. Fill in the table to show the range of z-values for which s, (z) approximates g(x) well.
What do you notice? Do your observations make sense with your answers for (a) and (b)?

x-range for s,

Alwliv|l o] 3
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71)nl,2n+1

3. Consider the power series E —_
|
— (2n+1)!

(a) Write out the first four partial sum functions. (The first two are done for you.) Use the Sum
command in Mathematica to help you. For a number N, to find sy(z),

Sum[(-1)"n x~(2n+1)/(2n+1)!, {n, 0, N}] (Fill in a number for N.)
so(z) = x
si(z) = x—La®
so(z) =
s3(z) =

(b) Plot s19(z) on the interval [—6, 6]. Instead of writing out s10(z), use the sum command:
Plot[Sum[(-1)"n x~(2n+1)/(2n+1)!, {n, 0, 10}1, {x, -6, 6}]
The graph should look like the graph of a familiar function. Which one?

o)
) ) (_1)n x2n+1
4. (Bonus +3) The Bessel function of order one is Jy(z) = g —_
! 192n+1
— nl(n+1)!2

(a) Show that its domain is (—o0, o), using the Ratio Test.

(b) The function Ji(x) is BesselJ[1,x] in Mathematica. Plot partial sums along with J;(x) in
Mathematica to determine the smallest degree N such that sy (x) gives a good approximation
for J1(z) on [—6,6].

Plot[{BesselJ[1,x], Sum[(-1)"n x~(2n+1)/(n!(n+1)!2"(2n+1)), {n,0,N}1}, {x,-6,6}]
N =
5. Print off your Mathematica work, and staple it to this packet. Make sure that all of the graphs you

were asked to produce are shown in your print-off. (You should have thirteen or fourteen graphs: six
for #1, six for #2, one for #3, and, optionally, one for #4.)



