Name:	Section:

You have 20 minutes to complete the following problems, without using your notes, book, or calculator.

Part 1: Trigonometry

1. Fill in the following table, using the five standard angles in the first quadrant.

Ang		$\sin \theta$	$\cos \theta$	$\tan \theta$
\deg	rad			

- 2. State the three Pythagorean Trig Identities:
 - (a)
 - (b)
 - (c)
- 3. $\cos(270^{\circ}) =$ _____
- $4. \cot\left(-\frac{5\pi}{6}\right) = \underline{\hspace{1cm}}$

Part 2: Derivatives

5. Differentiate.

(a)
$$\frac{d}{dx} 3x^7 - x^5 + x^{-1} =$$

(b)
$$\frac{d}{dx} 2 \sec x =$$

(c)
$$\frac{d}{dx} \arcsin(x) =$$

(d)
$$\frac{d}{dx} 2^x - 2^\pi =$$

6. Find the derivative, without simplifying afterward, and write your answer in the space provided.

(a)
$$f(x) = x^8 e^{5x}$$

$$f'(x) = \underline{\hspace{1cm}}$$

(b)
$$g(t) = \frac{\ln t}{2t-1}$$

$$g'(t) =$$

(c)
$$y = \arctan(x^2)$$

$$\frac{dy}{dx} =$$

Part 3: Antiderivatives

7. Find an antiderivative for the given function.

(a)
$$f(x) = \sec^2 x$$

(b)
$$J(s) = \frac{1}{s\sqrt{s^2 - 1}}$$

(c)
$$Q(t) = \frac{t^2 - t + 1}{t^2}$$

8. Evaluate the indefinite integrals:

(a)
$$\int x^3 - x^{-3} dx$$

(b)
$$\int \cos(w) + \cos(\pi) dw$$

(c)
$$\int \sqrt{t}(t-1) dt$$

Part 4: Definite integrals and substitution

9. Find the signed area between the curve $y = \sqrt{x}$ and the x-axis from x = 0 to x = 4.

10. Evaluate the indefinite integrals:

(a)
$$\int 2x \sqrt[3]{x^2 + 1} \, dx$$

(b)
$$\int t^4 \sin(t^5) dt$$

(c)
$$\int \cos^3 \theta \sin \theta \ d\theta$$

(d)
$$\int \frac{w}{1-w} \, dw$$