Name: \qquad
\qquad

You have 20 minutes to complete the following problems, without using your notes, book, or calculator.

Part 1: Trigonometry

1. Fill in the following table, using the five standard angles in the first quadrant.

Angle, θ		$\sin \theta$	$\cos \theta$	$\tan \theta$
		rad		

2. State the three Pythagorean Trig Identities:
(a)
(b)
(c)
3. $\cos \left(270^{\circ}\right)=$ \qquad
4. $\cot \left(-\frac{5 \pi}{6}\right)=$

Part 2: Derivatives

5. Differentiate.
(a) $\frac{d}{d x} 3 x^{7}-x^{5}+x^{-1}=$
(b) $\frac{d}{d x} 2 \sec x=$
(c) $\frac{d}{d x} \arcsin (x)=$
(d) $\frac{d}{d x} 2^{x}-2^{\pi}=$
6. Find the derivative, without simplifying afterward, and write your answer in the space provided.
(a) $f(x)=x^{8} e^{5 x}$

$$
f^{\prime}(x)=
$$

(b) $g(t)=\frac{\ln t}{2 t-1}$
\qquad
$g^{\prime}(t)=$
(c) $y=\arctan \left(x^{2}\right)$

$$
\frac{d y}{d x}=
$$

Part 3: Antiderivatives

7. Find an antiderivative for the given function.
(a) $f(x)=\sec ^{2} x$
(b) $J(s)=\frac{1}{s \sqrt{s^{2}-1}}$
(c) $Q(t)=\frac{t^{2}-t+1}{t^{2}}$
8. Evaluate the indefinite integrals:
(a) $\int x^{3}-x^{-3} d x$
(b) $\int \cos (w)+\cos (\pi) d w$
(c) $\int \sqrt{t}(t-1) d t$

Part 4: Definite integrals and substitution

9. Find the signed area between the curve $y=\sqrt{x}$ and the x-axis from $x=0$ to $x=4$.
10. Evaluate the indefinite integrals:
(a) $\int 2 x \sqrt[3]{x^{2}+1} d x$
(b) $\int t^{4} \sin \left(t^{5}\right) d t$
(c) $\int \cos ^{3} \theta \sin \theta d \theta$
(d) $\int \frac{w}{1-w} d w$
