
Math 114-01/03, Calculus II, Fall 2017
Section 01: MWF 8:15-9:20, OSS 333 Section 03: MWF 10:55-12:00 OSS 226

Instructor: Amy DeCelles

Email: adecelles@stthomas.edu
Webpage: http://personal.stthomas.edu/dece4515/
O�ce: OSS 203
O�ce phone: 2-5695
Tentative o�ce hours: MWF 9:30-10:30, Tu 2-3, Th 4-5, and by appointment

Course Prerequisites: Successful completion (C- or better) of trigonometry based Calculus I
(Math 113), or its equivalent.

Credits and Workload Expectations: 4 credits: 8-10 hours per week outside the classroom.

Course Materials and Resourses:

- Textbook: Calculus: Single and Multivariable, 7th ed., Hughes-Hallett, McCallum, et. al.

- Mathematica Software: Request a free download under St. Thomas’ site license.
https://www.stthomas.edu/its/students/personallyownedcomputers/software/

- Math Resource Center (MaRC, OSS 235) : free drop-in peer tutoring, group study areas,
solution manuals, Mathematica help, . . .

Course Objectives:

- Gaining a basic understanding of the subject (e.g. factual knowledge, methods, principles,
generalizations, and theories)

- Learning to apply course material (to improve thinking, problem solving, and decisions)

- Developing specific skills, competencies, and points of view needed by professionals in the
field most closely related to this course

- Developing skill in expressing oneself orally or in writing

Assignments: To prepare for class you will be assigned reading, along with reading questions
and discussion problems related to the reading. You will also be assigned a problem set
consisting of the discussion problems and some additional problems related to material that we
have already discussed in class. For each topic, you will write up one quality solution.
Occasionally, in-class participation or presentations will be graded.

Collaboration and consultation: I encourage you, when working on homework, to collaborate
with fellow students, to reread the textbook, and to ask the professor or the MaRC tutors for
help. You are also free to consult other textbooks or online resources for general information on
the topic. However, you may not consult any worked solution to an assigned homework problem.
This includes but is not limited to: the student solution manual, the instructor solution manual,
WileyPlus, other students’ written homework, and any online solution. Moreover, when you are

http://personal.stthomas.edu/dece4515/
https://www.stthomas.edu/its/students/personallyownedcomputers/software/
https://www.stthomas.edu/marc/


writing up your homework, you must write your own solutions, in your own words. If in doubt
about the acceptability of a certain kind of collaboration or consultation, ask the professor.

Late Work: Late work is typically not accepted. The lowest three scores in each assignment
category will be dropped at the end of the semester. Extensions may be granted if requested
before the due date, and work may certainly be submitted before the due date, if arrangements
have been made with the professor in advance. If there is a serious, unforeseeable reason for
missing more than three days of class, it is the student’s responsibility to contact the professor as
soon as possible and to make appointments with the professor and with Academic Counseling
upon returning to classes to make a plan for making up missed work.

Missed Exams: Make-up midterm exams may be given to students with legitimate excuses such
as serious illness, university sponsored events, etc., as long as the make-up exam can be taken
within a reasonable time frame. If it is not possible to schedule a make-up exam within a
reasonable time frame, the grade for the midterm may be prorated from the final exam. Written
documentation may be required. Rescheduling the final is not possible except under very extreme
circumstances.

Incompletes: Grades of I are normally not given in this course. However, they may be granted
due to extenuating circumstances especially if (i) the majority of the course work has been
completed at a level of C or better and (ii) the student demonstrates the ability to complete the
remaining coursework outside of the classroom. In such cases, a well-documented petition should
be submitted to the professor before the last day of classes. Please see the university policies on
withdrawals and incomplete grades.

Final Course Grade: The overall score for this course will be computed as outlined below.
Final letter grades will be assigned based on the overall score, with the two major components,
written solutions and exams also being considered separately. In particular, the final letter grade
will not be higher than one letter grade above the level of the work on written solutions or the
work on exams. Exceptional performance on the final may also be taken into account.

- Preparation (10%): reading questions (RQ, 5%), discussion preparation (D, 5%)

- Mastery Assignments (35%): problem sets (P, 5%), and quality solutions and oral
presentations (QS, 30%)

- Midterm Exams (30%): tentatively Mon Oct 2, Mon Oct 30, and Wed Nov 29

- Final Exam (20%): cumulative; 1:30-3:30 pm Thurs Dec 21, location TBA

- Best Exam (5%): at the end of the semester the score for the best exam will contribute an
extra 5% towards the overall score

Disability Accommodations: Academic accommodations will be provided for qualified
students with documented disabilities including but not limited to mental health diagnoses,
learning disabilities, Attention Deficit Disorder, Autism, chronic medical conditions, visual,
mobility, and hearing disabilities. Students are invited to contact the Disability Resources o�ce
about accommodations early in the semester. Appointments can be made by calling 651-962-6315
or in person in Murray Herrick, room 110. For further information, you can locate the Disability
Resources o�ce on the web at http://www.stthomas.edu/enhancementprog/.
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Math 114-01, F2017, Detailed Schedule
Mon Wed Fri

Sep 4, 2017 Sep 6, 2017 Sep 8, 2017

Labor Day
Intro to Course


Due today: Read 2.4, 3.9

Next class: RQ 10.1, D 2.4/3.9

Derivatives and Approximation (2.4, 3.9)

Due today: RQ 10.1, D 2.4/3.9

Next class: RQ 10.2, D 10.1, P&QS 2.4/3.9

Sep 11, 2017 Sep 13, 2017 Sep 15, 2017

Taylor Polynomials (10.1)

Due today: RQ 10.2, D 10.1, P&QS 3.9

Next class: RQ 5.1/5.2, D 10.2, P&QS 10.1

Taylor Series (10.2)

Due today: RQ 5.1/5.2, D 10.2, P&QS 10.1

Next class: RQ 7.5, D 5.1/5.2, P&QS 10.2

Definite Integrals and

 Approximation (5.1, 5.2)


Due today: RQ 7.5, D 5.1/5.2, P&QS 10.2

Next class: RQ 5.3/6.1/6.4, D 7.5, P&QS 5.1/5.2

Sep 18, 2017 Sep 20, 2017 Sep 22, 2017
 Numerical Integration (7.5)


Due today: RQ 5.3/6.1/6.4, D 7.5, P&QS 5.1/5.2

Next class: RQ 6.3/11.1, D 5.3/6.1/6.4, P&QS 
7.5

 The FTC (5.3, 6.1, 6.4)

Due today: RQ 6.3/11.1, D 5.3/6.1/6.4, P&QS 7.5

Next class: RQ 11.2, D 6.3/11.1, P&QS 
5.3/6.1/6.4

 Intro to Diff. Eq. (6.3, 11.1)

Due today: RQ 11.2, D 6.3/11.1, P&QS 
5.3/6.1/6.4

Next class: RQ 11.4/11.5, D 11.2, P&QS 6.3/11.1

Sep 25, 2017 Sep 27, 2017 Sep 29, 2017

 Slope Fields (11.2)

Due today: RQ 11.4/11.5, D 11.2, P&QS 6.3/11.1

Next class: RQ 7.1, D 11.4/11.5, P&QS 11.2

 Separation of Variables and

 Modeling (11.4, 11.5)


Due today: RQ 7.1, D 11.4/11.5, P&QS 11.2

Next class: P&QS 11.4, 11.5; D Rev

Review Session

Due today: D Rev, P&QS 11.4/11.5

Next class: Study for exam

Oct 2, 2017 Oct 4, 2017 Oct 6, 2017

Exam 1 
Next class: RQ 7.2, D 7.1

 Integration by Substitution (7.1)

Due today: RQ 7.2, D 7.1

Next class: RQ 7.4A, D 7.2, P&QS 7.1

 Integration by Parts (7.2)

Due today: RQ 7.4A, D 7.2, P&QS 7.1

Next class: RQ 7.4B, D 7.4A, P&QS 7.2

Oct 9, 2017 Oct 11, 2017 Oct 13, 2017

 Partial Fractions (7.4A)

Due today: RQ 7.4B, D 7.4A, P&QS 7.2

Next class: RQ 1.8, D 7.4B, P&QS 7.4A

 Trigonometric Substitutions (7.4B)

Due today: RQ 1.8, D 7.4B, P&QS 7.4A

Next class: RQ 4.7, D 1.8, P&QS 7.4B

 Limits (1.8)

Due today: RQ 4.7, D 1.8, P&QS 7.4B

Next class: RQ 7.6, D 4.7, P&QS 1.8

Oct 16, 2017 Oct 18, 2017 Oct 20, 2017
 L’Hopital’s Rule (4.7)


Due today: RQ 7.6, D 4.7, P&QS 1.8

Next class: RQ 4.8A, D 7.6, P&QS 4.7

Improper Integrals (7.6)

Due today: RQ 4.8A, D 7.6, P&QS 4.7

Next class: RQ 4.8B, D 4.8A, P&QS 7.6

Parametric Equations (4.8A)

Due today: RQ 4.8B, D 4.8A, P&QS 7.6

Next class: RQ 5.4, D 4.8B, P&QS 4.8A

Oct 23, 2017 Oct 25, 2017 Oct 27, 2017
Parametric Curves: 


Slope, Concavity, (4.8B) 

and Area (supplement)


Due today: RQ 5.4, D 4.8B, P&QS 4.8A

Next class: P&QS 4.8B; D Rev

Review Session

Due today: D Rev, P&QS 4.8B

Next class: Study for exam

Fall Break

Oct 30, 2017 Nov 1, 2017 Nov 3, 2017

Exam 2 
Next class: RQ 8.1, D 5.4

Area b/w Curves; Ave Value (5.4)

Due today: RQ 8.1, D 5.4

Next class: RQ 8.2A, D 8.1, P&QS 5.4

Areas and Volumes (8.1)

Due today: RQ 8.2A, D 8.1, P&QS 5.4

Next class: RQ 8.2B, D 8.2A, P&QS 8.1

Nov 6, 2017 Nov 8, 2017 Nov 10, 2017
Applications to Geometry: 


 Volumes (8.2A)

Due today: RQ 8.2B, D 8.2A, P&QS 8.1

Next class: D 8.2B, P&QS 8.2A; prepare 
presentation

Applications to Geometry: 

 Arc Length (8.2B)


Due today: D 8.2B, P&QS 8.2A

Next class: P&QS 8.2B; prepare presentation

Presentations: Density and 

Center of Mass (8.4)


Due today: P&QS 8.2B, 8.4 presentation QS

Next class: P 8.4, prepare presentation

Nov 13, 2017 Nov 15, 2017 Nov 17, 2017
Presentations: 


Applications to Physics (8.5)

Due today: P 8.4, 8.5 presentation QS

Next class: P 8.5, prepare presentation

Presentations: 

Applications to Economics (8.6)


Due today: P 8.5, 8.6 presentation QS

Next class: RQ 9.1, P 8.6, QS 8.4-8.6

Intro to Sequences (9.1A)

Due today: RQ 9.1, P 8.6, QS 8.4-8.6

Next class: RQ 9.2, D 9.1B, P&QS 9.1A

Nov 20, 2017 Nov 22, 2017 Nov 24, 2017

Convergence of Sequences (9.1B)

Due today: RQ 9.2, D 9.1B, P&QS 9.1A

Next class: P&QS 9.1B, D Rev

Mathematica Project Thanksgiving Break

Nov 27, 2017 Nov 29, 2017 Dec 1, 2017
Review Session


Due today: D Rev, P&QS 9.1B

Next class: Study for exam

Exam 3 
Next class: RQ 9.3, D 9.2

Geometric Series (9.2)

Due today: RQ 9.3, D 9.2

Next class: RQ 9.4, D 9.3, P&QS 9.2

Dec 4, 2017 Dec 6, 2017 Dec 8, 2017

Convergence of Series (9.3)

Due today: RQ 9.4, D 9.3, P&QS 9.2

Next class: RQ 9.5, D 9.4, P&QS 9.3

Ratio Test (9.4)

Due today: RQ 9.5, D 9.4, P&QS 9.3

Next class: RQ 10.3A, D 9.5, P&QS 9.4

Power Series (9.5)

Due today: RQ 10.3A, D 9.5, P&QS 9.4

Next class: RQ 10.3B, D 10.3A, P&QS 9.5

Dec 11, 2017 Dec 13, 2017 Dec 15, 2017

Taylor Series Revisited (10.2, 10.3A)

Due today: RQ 10.3B, D 10.3A, P&QS 9.5

Next class: D 10.3B, P&QS 10.3A

Using Taylor Series (10.3B)

Due today: D 10.3B, P&QS 10.3A

Due next class: P&QS 10.3B

Open

Due today: P&QS 10.3B



Problem Sets and Quality Solutions

General Guidelines

- All written homework is due at the beginning of class.

- Write your name, your section (e.g. Math 114-01, Math 200-04, etc.), the assignment (e.g. P 12.1 or
QS 3.9), and the due date on the front page.

- Write your name on each page.

- Staple two neat packets: one for the problem set (P), one for your quality solution (QS).

- Neat edges! If you use notebook paper, trim the frayed edges with scissors.

- Label each problem, and circle or box each final answer.

- Write neatly. If your handwriting is illegible, use a word processor.

- At the end of the problem set (P) include an evaluation box. (See below.)

- The rule of thumb is: make it easy for the grader to give you credit for your work!

Problem Sets (P)

- write up your solutions to the discussion problems and additional problems

- evaluation criteria: clarity, completeness, and correctness

- evaluation marks: thoroughly (plus), mostly (check), significantly (check minus), not at all (ex)

- evaluation box: list the three criteria and leave spaces for the evaluation marks

Quality Solutions (QS)

- A quality solution is a written explanation of how to solve a textbook problem. Your imaginary
audience is a peer who is struggling to understand the topic.

- Restate the question. (That includes copying down directions that appear at the beginning of a
group of problems and any tables or graphs).

- Show all your steps, and make your reasoning clear. If your solution includes a table, graph, or
drawing, make sure it is clearly labeled.

- The rule of thumb is that what you write should stand on its own as an explanation.

Rubric for Quality Solutions

- Very Nice (4): clear, correct, and complete solution of the problem and good presentation

- Right Idea (3): essentially correct, but some small gaps, lack of clarity, or poor presentation

- Good Start (2): shows partial understanding, e.g. correct start, but significant flaws or gaps

- Good E↵ort (1): inappropriate approach, faulty reasoning, or wrong problem

- No Attempt (0): recopy problem but do not attempt to solve it

The numbers are “messages” not points! For example, getting an all 3s and 4s (with a few more 4s) would
be very good, A-level work, whereas consistently scoring 2s would mean that your work does not
demonstrate su�cient understanding to move on (D-level work).

Challenge Problems. Occasionally you will be assigned challenge problems. These problems do factor
into your regular grade. (So don’t skip them!) Challenge problems are graded on a more lenient scale: as
long as you attempt the problem, your score for the problem will be one level higher than the rubric above
dictates. For example, if your work on the problem would normally merit a 3 (you have the right idea), it
will get a 4, because having the right idea on a challenge problem is really very good!



Math 114, Derivatives and Linear Approximation (Sections 2.4, 3.9)

Main Points:

1. The practical meaning of the derivative

2. Using the derivative for linear approximation

3. Using the second derivative (concavity) to determine whether the linear approximation is an
over-estimate or an under-estimate.

Overview and Example

Recall that the derivative is an instantaneous rate of change. Graphically, this instantaneous rate of
change is represented as the slope of a tangent. We can use an instantaneous rate of change of a
quantity to make predictions about how much the quantity will change in the near future. This is the idea
of linear approximation.

For example, if I have 2 inches of flood water in my basement at 9:00 am and the rate at which flood water
is rising at that moment is 4 inches per hour, then I expect to have 3 inches (3 inches = 2 inches + (4
inches per hour)·(1/4 hour)) of water in my basement at 9:15. However, it would be unreasonable to
predict that I would have 98 inches of water (98 inches = 2 inches + (4 inches per hour)·(24 hours)) by
9:00 am the next day, because, while it is reasonable to assume that the rate at which water is rising is
approximately constant over a short interval of time (like 15 minutes), it is unreasonable to expect the rate
to be constant over a long interval of time (24 hours.)

This is the intuitive idea behind using a tangent line to approximate a function locally. If the height, in
inches, of water in my basement t hours after 9:00 am is h(t). Then the fact that there is two inches of
water in my basement at 9:00 am means h(0) = 2, and the fact that the water is rising at a rate of 4 inches
per hour at 9:00 am means that h0(0) = 4. Locally, the tangent line, represented by the linear function
L(t) = 2 + 4t, is a reasonable approximation for h(t). So the height of water at 9:15 is reasonably
approximated as: h(1/4) ⇡ L(1/4) = 2 + 4(1/4) = 3 inches. However, the height of the water at 9:00 the
following day, which is h(24), cannot reasonably be approximated by L(24) = 2 + 4(24) = 98 inches.

Assignments

1. Reading Assignment

Read Sections 2.4 and Section 3.9, on linear approximation, focusing on the first part, “The
Tangent Line Approximation,” page 169. Hopefully this material is familiar to you from Calc I.

Words and phrases in italics are important words and phrases. Formulas in blue boxes are
important formulas. Pay attention to these things and take notes on them in your notebook!

2. Discussion Problems

2.4 #1, 2, 57, 3.9 # 1, 4, 8, 17, 26

3. Practice Problems and Quality Solution

Practice: 2.4: #5, 6, 3.9 # 2, 5, 12(a)(b), 20
Quality Solution: 3.9 #6





Math 114, Taylor Polynomials (Section 10.1)

Main Points:

1. Extending the idea of linear approximation to quadratic approximation

2. Taylor polynomials of higher degree

Overview

Recall that if a function is concave up, then a forward linear approximation will be an under-estimate.
(Similarly, if a function is concave down, then a forward linear approximation will be an under-estimate.)
We can improve our estimate, taking concavity into account by adding a quadratic term whose coe�cient
comes from the second derivative. This is the idea behind a quadratic approximation. Extending this idea,
we can make better and better estimates by constructing polynomials of higher degree whose coe�cients
come from higher order derivatives. Such polynomials are called Taylor polynomials.

Assignments

1. Reading Assignment

Read Section 10.1, and take notes in your notebook. Then answer the reading questions.

2. Discussion Problems

10.1 # 3, 13, 21, 23, 25

3. Practice Problems and Quality Solution

Practice: 10.1 # 1, 15, 17, 26-29, 37
Quality Solution: 10.1 #12





Math 114, Taylor Polynomials (Section 10.1)

Name: Section:

Read Section 10.1, focusing on pages Taylor polynomials of degree 1 2. Take notes in your notebook,
making sure to include words and phrases in italics and formulas in blue boxes. Then answer the following
questions.

Reading Questions

1. Taylor Polynomials of Degree 1: Linear Approximation. Reread Example 1.

(a) What is the Taylor polynomial of degree 1 (i.e. the linear approximation) for g(x) = cosx, with
x in radians, for x near zero?

(b) Try this: What is the Taylor polynomial of degree 1 for h(x) = e

x for x near zero?

2. Taylor Polynomials of Degree 2: Quadratic Approximation. Reread Example 2.

(a) What is the quadratic approximation to g(x) = cosx for x near zero?

(b) Try this: What is the quadratic approximation to h(x) = e

x for x near zero?

3. Higher Degree Taylor Polynomials. Reread Examples 3 and 4.

(a) What is the Taylor polynomial of degree 8 for g(x) = cosx for x near zero?

(b) Which Taylor polynomial, P2 or P8 is a better approximation for g(x) near zero? Explain.



Math 114, Taylor Polynomials (Section 10.1)

4. Taylor Polynomials around x = a. Reread Example 7.

(a) What is the Taylor polynomial of degree 4 approximating f(x) = lnx for x near 1?

(b) Look at the graph of P4(x) and the graph of ln(x) in Figure 10.7. On what range of x-values
does it look like P4(x) approximates ln(x) well? (Eye-ball it and estimate to one decimal place.)

5. What struck you in reading this section? What is still unclear to you? What questions do you have?



Math 114, Taylor Series (Section 10.2)

Main Points:

1. The idea of a Taylor series as a Taylor polynomial of infinite degree

2. Limitations in the scope of a Taylor series approximating a function

Overview

Recall that the quadratic approximation for a function improves the linear approximation for the function

by taking concavity into account, and this trend continues with higher degree Taylor polynomials: the

higher the degree, the better the approximation, at least locally. In this section, we consider the family of

all Taylor polynomials for a given function, centered at a given point, by looking at a Taylor series.

Assignments

1. Reading Assignment

Read Section 10.2, and take notes in your notebook. Then answer the reading questions.

2. Discussion Problems

10.2 # 3, 5, 18, 39(a)*

*For #39(a), you may use Mathematica or a graphing calculator to graph the Taylor

polynomials.

3. Practice Problems and Quality Solution

Practice: 10.2 # 6, 13, 19, 29, 37*

Quality Solution: 10.2 #12

*For #37, you may use Mathematica or a graphing calculator to graph the Taylor polynomials.





Math 114, Taylor Series (Section 10.2)

Name: Section:

Read Section 10.2, focusing on “Taylor Series for cosx, sinx, e

x

” and “Taylor Series in General.” For now,

you can skip over “The Binomial Series Expansion.” Take notes in your notebook, making sure to include

words and phrases in italics and formulas in blue boxes. Then answer the following questions.

Reading Questions

1. Taylor Series for cosx, sinx, and e

x

.

(a) What is the Taylor series for cosx centered at zero?

(b) What is the general term in the Taylor expansion for cosx about x = 0?

2. Taylor Series in General. Make sure to write the formulas for Taylor series for f(x) about x = 0

and for Taylor series for f(x) about x = a in your notebook.

3. Convergence of Taylor Series. Do not worry about the precise meaning of the word

“convergence;” we will discuss this concept carefully at the end of the semester. An informal

understanding of the notion is su�cient for our present purposes. Roughly speaking, if the Taylor

polynomials P0, P1, P2, . . .Pn

. . . give better and better approximations for a function f in a certain

range of x-values, then we say that the Taylor series converges to f on that interval of x-values.

Reread the passage about the Taylor series for lnx about x = 1 under “Convergence of Taylor

Series”, and look at Figure 10.10. True or false: P

n

(x) approximates ln(x) better and better as n gets

larger, regardless of what x is. Explain.



Math 114, Taylor Series (Section 10.2)

4. What struck you in reading this section? What is still unclear to you? What questions do you have?



Math 114, The Definite Integral: Area and Net Change (Sections 5.1, 5.2)

Main Points:

1. Estimating accumulated change over a long interval

2. Estimating the area area under a curve using left and right sums

3. The definite integral as exact accumulated change or exact area

Overview

Recall that we can approximate the change in a quantity over a short interval of time using an

instantaneous rate of change. (This is linear approximation.) If we want to approximate the accumulated

change in a quantity over a long interval of time, we can divide the long interval into short subintervals,

estimate the changes in the quantity over each subinterval, and then add up these changes to get an

estimation for the accumulated change over the long time interval. (Such a sum is called a Riemann sum.)

Dividing up the long interval into more subintervals and repeating the process improves our estimate.

If we have a graph of a positive rate function r(t) versus time, then the multiplication of the rate at time

t = a by a short time interval �t represents the area of a rectangle of height r(a) and width �t. Thus

estimating net change can be understood as estimating the area under a curve using rectangles, whose

heights are determined by the graph of the function. Dividing the interval into more subintervals results in

more rectangles; the more rectangles we use, the better our estimate will be.

For examples with distance and velocity, see Section 5.1.

We find exact accumulated change and exact areas under curves using limits. As the number of subintervals

(rectangles) increases, the approximation gets better and better; the limit is called the definite integral.

If a rate function r(t) is negative, this means that the quantity is decreasing and the net change over a time

interval is negative. Because of this, when we talk about the definite integral as the “area under the

curve,” we really mean that it is the signed area between the curve and the x-axis: the signed area is

positive when the curve is above the x-axis and negative when the curve is below the x-axis.

Assignments

1. Reading Assignment.

Read 5.1 and 5.2. Take notes, and answer the reading questions.

2. Discussion Problems.

5.1 # 17, 18, 25, 47, 48, 5.2 # 34, 58

3. Practice Problems and Quality Solution.

Practice: 5.1 # 12, 19, 20 31, 33, 5.2 # 8

QS: 5.1 #24





Math 114, The Definite Integral: Area and Net Change (Sections 5.1, 5.2)

Name: Section:

Read Sections 5.1 and 5.2. Take notes in your notebook, making sure to include words and phrases in

italics and formulas in blue boxes. Then answer the following questions.

Reading Questions

1. Distance and Velocity. Review the notation in “Left and Right Sums”, and try 5.1 #1, 23.



Math 114, The Definite Integral: Area and Net Change (Sections 5.1, 5.2)

2. The Definite Integral. Try 5.2 #1, 2, 6.

3. What struck you in reading these sections? What is still unclear? What questions do you have?



Math 114, Numerical Methods for Definite Integrals (Section 7.5)

Main Points:

1. Midpoint Rule, Trapezoidal Rule

2. Over/under estimates, errors

3. Simpson’s Rule

Overview

Recall that we can estimate the value of a definite integral using a left sum, which uses rectangles whose
heights are determined by the value of the function on the left endpoints of the subintervals, or a right
sum, which uses rectangles whose heights are determined by the value of the function the right endpoints.

In this section, we refine our estimates using more sophisticated numerical methods. The midpoint rule
uses rectangles whose heights are determined by the value of the function at the midpoints of the
subintervals. The trapezoidal rule takes the average of the left and right sums. Simpson’s rule takes a
weighted average of the estimates obtained from the midpoint and trapezoidal rules.

The reasons for averaging the left and right sums in the trapezoidal rule and for taking a weighted average
of the midpoint and trapezoidal rule in Simpson’s rule become apparent when we look at the errors of our
estimates. For example, for an increasing function the left sum underestimates the integral (a positive
error) whereas the right sum overestimates the integral (a negative error). This is the motivation for
averaging the two (to cancel out the errors) in the trapezoidal rule.

Assignments

1. Reading Assignment

Read Section 7.5. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

7.5 # 1, 20, 21, and one additional problem; see below.

3. Practice Problems and Quality Solution

Practice: 7.5 # 4, 22, and one additional problem; see below.
Quality Solution: 7.5 #24





Math 114, Numerical Methods for Definite Integrals (Section 7.5)

Name: Section:

Read Section 7.5, focusing on the midpoint rule and the trapezoidal rule. Take notes in your notebook,
making sure to include words and phrases in italics and formulas in blue boxes. Then answer the following
questions.

Reading Questions

1. Midpoint and Trapezoid Rules. Reread Examples 1 and 2.

(a) For
R 2
1

1
x

dx, list the vlaues of LEFT(2), RIGHT(2), MID(2), TRAP(2) in ascending order (from
smallest to largest.)

(b) Which of the four estimates are underestimates? Which are overestimates? Which estimate is
the best?

2. Over- and Underestimates. Reread pages 378-379.

(a) If f(x) is an increasing function, which of LEFT(n), RIGHT(n), MID(n), TRAP(n) forR
b

a

f(x)dx is guaranteed to be an underestimate? an overestimate?

(b) If f(x) is concave up, which of LEFT(n), RIGHT(n), MID(n), TRAP(n) for
R
b

a

f(x)dx is
guaranteed to be an underestimate? an overestimate?
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3. The graph of e�x

2
/8 for �5  x  5 is shown below. Shade the region whose area is given by the

definite integral
R 2
0 e

�x

2
/8

dx.

(a) Given the shape of the graph, which of the four rules should give overestimates of the integral
and which should give underestimates?

-5 -4 -3 -2 -1 0 1 2 3 4 5

-1

1

(b) Compute LEFT(2), RIGHT(2), MID(2), and TRAP(2). (Round to six decimal places.)

4. What struck you in reading these sections? What is still unclear? What questions do you have?
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Additional Discussion Problem

We will approximate the value of
R 1
0 cos(x2) dx. Use Mathematica for your computations.

(a) Use Mathematica to graph the function: Plot[Cos[x^2], {x, 0, 1}]. Sketch the graph below. In
particular, make sure you have the concavity correct.

(b) Approximate the integral using LEFT(4), RIGHT(4), MID(4), and TRAP(4). Use Mathematica, and
round to six decimal places.

(c) Use your sketch of the graph in (a) to determine which of your estimates in (b) are overestimates and
which are underestimates. Which is your best underestimate? Which is your best overestimate?

(d) Approximate the integral using SIMP(4).
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Additional Practice Problem

In this problem we will estimate I =
R 1
0 sin( 12x

2) dx.

(a) Use Mathematica to graph the function: Plot[Sin[(1/2)x^2], {x, 0, 1}]. Sketch the graph
below. In particular, make sure you have the concavity correct.

(b) List the values LEFT(n), RIGHT(n), MID(n), and TRAP(n), and I in increasing order (smallest to
largest).

(c) Use Mathematica to compute LEFT(5), RIGHT(5), MID(5), TRAP(5), and SIMP(5).



Math 114, The Fundamental Theorem of Calculus (Sections 5.3, 6.1, and 6.4)

Main Points:

1. FTC 1: Evaluating definite integrals using antiderivatives.

2. FTC 2: Constructing antiderivatives using the definite integral.

Overview

Recall that, given a function r(t) for the rate at which some quantity Q is changing, we can estimate the
net change in Q over a long time interval [a, b] by dividing up the long interval into short subintervals,
using linear approximation to estimate the change in Q over each subinterval, and adding up these changes.
The exact accumulated net change is obtained by taking a limit of Riemann sums; this limit is the definite

integral: �Q = Q(b)�Q(a) =
R
b

a

r(t) dt.

This is the idea behind the first part of the Fundamental Theorem of Calculus, which says that if

F (x) is a function with a continuous derivative f(x), then
R
b

a

f(x)dx = F (b)� F (a). Since f is a
derivative of F , we say F is an antiderivative of f . This means that we can evaluate definite integrals
exactly whenever we can find antiderivatives.

This same insight allows us to construct antiderivatives. Again, suppose r(t) is a function that tells the
rate at which some quantity Q is changing. Now suppose we want to know the accumulated net change in
Q for many di↵erent time intervals. We fix a given intial time t = a and let A(x) be the net change from
t = a to t = x, for many di↵erent x-values. Graphically, this is represented by finding the (signed) area
between the graph of r and the t-axis from a to x. So A(x) is sometimes called the “area-so-far” function.
We know that this area is represented by a definite integral: A(x) =

R
x

a

r(t) dt.

Since A(x) tells the net change in Q from t = a to t = x, We can find a formula for Q(x) if we know the
initial quantity Q0:

Q(x) = Q0 +

Z
x

a

r(t) dt = Q0 +A(x)

Since r is the derivative of Q, Q is an antiderivative of r. Notice that every choice of initial value Q0 will
give an antiderivative for r. In particular, choosing Q0 = 0 shows that the area-so-far function itself is an
antiderivative for r.

This is the idea behind the second part of the Fundamental Theorem of Calculus, which says that,
for a continuous function f(x), we can construct an antiderivative function F (x) as follows: choose a
number a in the domain of f and let F (x) =

R
x

a

f(t) dt.

Assignments

1. Reading Assignment

Read Sections 5.3, 6.1, and 6.4. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

5.3 # 16, 21, 6.1 # 8, 6.4 # 3*, 9
*For 6.4 #3, replace the lower limit with 0.00001, as in Example 1, page 342, and use SIMP(2).

3. Practice Problems and Quality Solution

Practice: 5.3 # 23, 6.1 # 3, 11, 6.4 # 8
Quality Solution: 6.4 #22





Math 114, The Fundamental Theorem of Calculus (Sections 5.3, 6.1, and 6.4)

Name: Section:

Read Sections 5.3, 6.1, and 6.4. Take notes in your notebook, making sure to include words and phrases in
italics and formulas in blue boxes. Then answer the following questions.

Reading Questions

1. Applications of the Fundamental Theorem. Reread Example 3 in Section 5.3.

(a) Suppose that one of your classmates says that neither car is ahead after one minute, because
their graphs intersect at t = 1. Explain, in your own words, why this is incorrect.

(b) Try Exercise 8, at the end of Section 5.3.

2. Computing Values of an Antiderivative Using Definite Integrals Reread this part of
Section 6.1, focusing on Example 4 and Example 5. Try 6.1 #1 and 2.
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3. Constructing Antiderivative Functions Reread Section 6.1, focusing on the initial discussion
up to and including Theorem 6.2.

(a) Use the Construction Theorem for Antiderivatives to write down a formula for an antiderivative

F (x) of f(x) = e

�x

2

. (Your formula should have an integral in it.)

(b) This antiderivative function is important in the theory of probability. Use LEFT(2) or
RIGHT(2) to estimate F (1). Round your answer to six decimal places.

4. What struck you in reading these sections? What is still unclear? What questions do you have?



Math 114, Introduction to Di↵erential Equations (Sections 6.3, and 11.1)

Main Points:

1. New terms: di↵erential equation, general solution of di↵erential equation

2. Finding solutions to simple di↵erential equations, verifying solutions to di↵erential equations

3. New terms: initial value problem, initial condition, particular solution, equillibrium solution

4. Solving an initial value problem, given the general solution and an initial condition

Overview

A di↵erential equation is simply an equation involving a derivative. A simple example is the equation
dy

dx

= 2x. Notice that this equation is true for the function y = x

2 and the function y = x

2 + 5, since these
are antiderivatives of 2x. Such functions are called particular solutions of the di↵erential equation. The
most general form of the solution is, of course, y = x

2 + C, where C is a real number. This is called the
general solution. It represents a whole family of solutions. Section 6.3 discusses di↵erential equations
like this, that can be solved using antiderivatives.

Another simple di↵erential equation is dy

dx

= 2y. This equation cannot be solved using antiderivatives as
above, but we might be able to solve it by gussing and checking. Can you think of a function whose
derivative is simply 2 times itself? How about y = e

2x? We can check that this is a solution simply by
di↵erentiating: d

dx

e

2x = 2 · e2x. This shows that, when y = e

2x, dy

dx

= 2y, i.e. y = e

2x is a solution to the
di↵erential equation. It turns out that every function of the form y = Ce

2x, where C is a real number, is
also a solution, as we can check: d

dx

Ce

2x = C(2e2x) = 2 · (e2x).

We can find particular solutions from the general solution, if we also have an initial condition. For
example, if the general solution is y = Ce

2x and we have the initial condition y(0) = 5, we can find the
particular solution by substituting in x = 0 and y = 5 and solving for C as follows: 5 = Ce

2·0 = Ce

0 = C.
Thus the particular solution is y = 5e2x. A problem of this sort is called an initial value problem.

Even without a formula for the general solution of a di↵erential equation, we can often determine quite a
bit about the family of solutions: we can use qualitative analysis to sketch graphs and numerical methods
to generate tables of data approximating the solution. Sections 11.1-11.3 discuss these methods in depth.

Assignments

1. Reading Assignment

Read Sections 6.3 and 11.1. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

6.3 # 5, 7, 12, 11.1 # 9, 11, 18, 20

3. Practice Problems and Quality Solution

Practice: 6.3 # 8, 10, 16*, 11.1 # 8, 17, 21
*For 6.3.16, your final answer will be in terms of k.
Quality Solution: 11.1 #10





Math 114, Introduction to Di↵erential Equations (Sections 6.3, and 11.1)

Name: Section:

Read Section 6.3, focusing on the first part (before the part on equations of motion), and Section 11.1,
focusing on the first part (before the part on first and second-order di↵erential equations). Take notes in
your notebook, making sure to include words and phrases in italics and formulas in blue boxes. Then
answer the following questions.

Reading Questions

1. Solving Simple Di↵erential Equations with Antiderivatives. Reread Examples 1 and 2 in
Section 6.3. Imitate these examples to solve the following problems.

(a) Find the general solution of the di↵erential equation dy

dx

= 3x2.

(b) Find the solution of the initial value problem dy

dx

= 3x2; y(1) = 0.

2. How Fast Does a Person Learn? Reread the first part of Section 11.1, “How Fast Does a
Person Learn?”, and answer the following questions.

(a) Here, y stands for the percentage of the task already mastered. What does dy

dt

mean, in terms of

learning the task? What happens to dy

dt

as y increases? Can you see this behavior in the graphs
in Figure 11.1?

(b) Solving the Di↵erential Equation Numerically Suppose that, at the beginning of the
employee’s training, the employee has mastered 0% of the task. Use the numerical method that
generates the data in Table 11.1 to find the y-value for t = 6.
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(c) A Formula for the Solution to the Di↵erential Equation According to the text, what is
the general solution to the di↵erential equation?

(d) Finding the Aribitrary Constant If we suppose that, at the beginning of the employee’s
training, the employee has mastered 0% of the task, we have the initial conditions: y = 0 when
t = 0. What is the particular solution of the di↵erential equation in this case?

Find the three particular solutions corresponding to the initial values: y(0) = 50, y(0) = 100,
and y(0) = 150.

Which of the above solutions have meaningful practical interpretations, in terms of learning?

3. What struck you in reading these sections? What is still unclear? What questions do you have?



Math 114, Slope Fields (Section 11.2)

Main Points:

1. Generating a slope field from a di↵erential equation

2. Sketching solution curves using a slope field

Overview

Given a di↵erential equation that expresses

dy

dx

in terms of x and y, we can generate a table of values with

x and y as inputs and

dy

dx

as outputs. Thus, for each point (x, y) in the plane, we can sketch the slope,

dy

dx

,

of the solution curve passing through that point (as long as it is defined). The collection of all these short

lines is called a slope field, and it gives use a way to sketch solution curves for the di↵erential equation.

Assignments

1. Reading Assignment

Read Section 11.2. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

11.2 # 6, 11, 19, 23

3. Practice Problems and Quality Solution

Practice: 11.2 # 5, 20, 21

Quality Solution: 11.2 # 12





Math 114, Slope Fields (Section 11.2)

Name: Section:

Read Section 11.2, focusing on the first part (before the part about existence and uniqueness of solutions).

Take notes in your notebook, making sure to include words and phrases in italics and formulas in blue

boxes. Then answer the following questions.

Reading Questions

1. Consider the di↵erential equation

dy

dx

= x� y + 1.

(a) Complete the table below by choosing x and y-values and finding

dy

dx

at those values using the

di↵erential equation. For, example, with x = 0 and y = 0, we have

dy

dx

= 0� 0 + 1 = 1.

(b) Sketch a slope field for this di↵erential equation, using your table of values by drawing a short

line with the appropriate slope

dy

dx

at that point. For example, at the point (0, 0), draw a short

line with slope 1, since

dy

dx

= 1 when x = 0 and y = 0.

(c) Use your slope field to sketch three significantly di↵erent solution curves.

x y

dy

dx

0 0 1

0 1 0

0 2 �1

0 3

0 4

0 �1

0 �2

0 �3

�1 0

�1 1
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2. What struck you in reading this section? What is still unclear? What questions do you have?



Math 114, Separation of Variables and Modeling (Sections 11.4 and 11.5)

Main Points:

1. Using separation of variables to find the general solution of certain di↵erential equations

2. Writing a di↵erential equation to model a real-life situation

3. Stable and unstable equillibrium solutions

Overview

A separable di↵erential equation is one that can be written in the form: y0 = f(x)g(y). For example:

y0 = xy3 y0 = x2 y�2 y0 = 6x2/(2y + cos y)

are separable di↵erential equations. To solve a separable di↵erential equation, write the derivative in
Leibnitz notation (dy/dx instead of y0), write the di↵erential equation in “di↵erential form,” i.e. with all
the x-values on one side, with dx and all the y-values on the other side, with dy, and integrate both sides.

An example of a separable di↵erential equation that occurs in application is the equation modelling
unconstrained population growth. This model operates under the assumption that a population will grow
at a rate directly proportional to the size of the population, P . In other words dP

dt is proportional to P .

dP

dt
= k P (for some k > 0)

The positive constant k is the constant relative growth rate of the population.

According to Newton’s Law of Cooling, the rate at which temperature of an object decreases is
proportional to the temperature di↵erence between the object and its surroundings. Thus the temperature
of a cooling object can also be modelled by a di↵erential equation involving a proportionality statement.

In general, when a quantity A is directly proportional to a quantity B, that means that there is a positive
constant, say k, such that A = kB. The constant k is called the constant of proportionality.

An equillibrium solution of a di↵erential equation is a constant solution. Equillibrium solutions for a
di↵erential equation of the form y0 = g(y) can be found by letting y0 = 0 and solving for y, since this
enables us to find y-values at which the rate at which y is changing is zero.

Assignments

1. Reading Assignment

Read Sections 11.4 and 11.5. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

11.4 # 7, 15, 18, 11.5 # 8, 43

3. Practice Problems and Quality Solution

Practice: 11.4 # 10, 11.5 # 28, 41
Quality Solutions: 11.4 # 20, 11.5 # 40*
*11.5.40 is a Challenge Problem. It will be graded on a more lenient scale.





Math 114, Separation of Variables and Modeling (Sections 11.4 and 11.5)

Name: Section:

Read Section 11.4, focusing on the first part (before the part about the justification for separation of
variables), and Section 11.5, focusing on the population growth example and the heating/cooling examples.
Take notes in your notebook, making sure to include words and phrases in italics and formulas in blue
boxes. Then answer the following questions.

Reading Questions

1. Separation of Variables. Reread Examples 1 and 2 in Section 11.4.

(a) What must be done to the di↵erential equation before the integration step?

(b) What must be done after the integration step to find the general solution?

(c) Imitate Example 1 to solve the initial value problem: dP
dt = .02P ; P (0) = 100.

(d) Imitate Example 2 to solve the initial value problem: dH
dt = �0.3(H � 20) ; H(0) = 100.
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2. Setting up a Di↵erential Equation for Population Growth Reread the beginning of Section
11.5, about setting up a di↵erential equation for unrestricted population growth.

(a) In this model, the rate at which the population grows with respect to time is proportional to
what quantity?

(b) What does dP
dt represent in the di↵erential equation? What does 0.02 represent? P?

3. A Di↵erential Equation for Heating and Cooling In Section 11.5, reread the first two
paragraphs in the part entitled “Newton’s Law of Heating and Cooling” and the part entitled
“Equilibrium Solutions.”

(a) In this model, the rate at which the co↵ee cools with respect to time is proportional to what
quantity?

(b) Suppose the co↵ee stands in a room where the temperature is 20�C. If H(t) is the temperature,
in �C, of the co↵ee at time t, in minutes, the di↵erential equation modeling the cooling of the
co↵ee is the di↵erential equation

dH
dt = �k(H � 20)

In this equation what does dH
dt represent? What does (H � 20) represent?

What is the equilibrium solution? Is it stable or unstable?

4. What struck you in reading these sections? What is still unclear? What questions do you have?



Math 114, Integration by Substitution (Section 7.1)

Main Points:

1. Guess-and-check to “undo the chain rule”

2. Changing variables in an integral: choose inside function“w” and then dw = w

0(x)dx

3. Two methods for using substitution in definite integrals

Overview

So far the only strategy we have for finding antiderivatives is to recognize them as derivatives of familiar
functions, sometimes using algebra or trigonometry to rewrite a function first. Can you recognize 2e2x as
the derivative of a familiar function? It is the derivative of e2x. The constant factor of 2 comes from the
chain rule. For very simple examples, we can “undo the chain rule” in this way. (See Examples 1 and 2.)

For less simple examples, it helps to perform a change of variables. We give the “inside function” a name,
say w(x) and transform an integral having x as the variable of integration to an integral having w as the
variable of integration. Remember that the chain rule says

d

dx

F (w(x)) = F

0(w(x)) · w0(x)

Thus, if F is an antiderivative for f (i.e. F 0 = f),

Z
f(w)w0(x) dx =

Z
f(w) dw = F (w(x)) + C

since w

0(x) dx = dw. (See Examples 3-7.)

We can sometimes use substitution even if the integrand is not a constant multiple of something of the
form f(w(x))w0(x). In particular, as long as the integrand can be rewritten as w0(x) times something
entirely in terms of w, substitution is worth trying. See Examples 12-13.

Since substitution is a technique for finding antiderivatives, it is also useful for definite integrals. The trick
is to be careful not to plug in x-values for w. There are two ways to do this. A two-step method requires
finding the indefinite integral first; as an alternative, you can transform the limits of integration along with
the whole integral. See Examples 9-11.

Assignments

1. Reading Assignment

Read Section 7.1. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

7.1 # 19, 27, 36, 40, 59, 63, 77

3. Practice Problems and Quality Solution

Practice: 7.1 # 10, 22, 31, 33, 60, 74, 79, 148
Quality Solution: 7.1 # 66





Math 114, Integration by Substitution (Section 7.1)

Name: Section:

Read Section 7.1. Take notes in your notebook, making sure to include words and phrases in italics and
formulas in blue boxes. Then answer the following questions.

Reading Questions

1. Simple Substitutions. Reread Examples 1-4.

(a) Imitate Example 1 (or Example 3) to find
R
2xex

2

dx.

(b) Imitate Example 2 (or Example 4) to find
R
x

4 cos(x5) dx.

2. Less Simple Substitutions. Reread Examples 5-7.

(a) Find
R
cos5 x sinx dx. (Hint: Let w = cosx.)
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(b) Find
R
e

x

p
1 + e

x

dx. (Hint: Let w = 1 + e

x.)

3. Substitution with a Definite Integral Reread Examples 9-11.

(a) State the two ways to use substitution with a definite integral. (See the box after Example 9.)

(b) Find
R 2
1 2xex

2

dx using both ways.

4. What struck you in reading this section? What is still unclear? What questions do you have?



Math 114, Integration by Parts (Section 7.2)

Main Points:

1. IBP as “reversing the product rule” to exchange a hard integral for an easier one

2. Two tricks: letting v

0 = 1; noticing a pattern of repeating derivatives

Overview

Integration by parts is a way to use the “reverse product rule” to exchange a hard integral for an easier
one. Recall that the product rule can be written as:

d

dx

u(x) v(x) = u

0(x) v(x) + u(x) v0(x)

Restating in terms of integrals and rearranging gives:

Z
u(x) v0(x) dx = u(x) v(x) �

Z
u

0(x)v(x) dx

Using the shorthand du = u

0(x) dx and dv = v

0(x) dx, we can rewrite this as:

Z
u dv = uv �

Z
v du

IBP is a good strategy to try when the integrand is a product of two functions. In order for IBP to work,
you need to be able to di↵erentiate one of the functions and anti-di↵erentiate the other. Choose u to be the
function you want to di↵erentiate and v

0 to be the function you want to anti-di↵erentiate.

Sometimes IBP can be used even when the integrand does not look like a product of two functions. In
particular, if we know the derivative of the integrand, we can let the whole integrand be u and we can let
v

0 = 1. For example, this works for
R
lnx dx and

R
arcsinx dx. See Example 3.

Sometimes IBP can be used even when neither part of the integrand becomes simpler when di↵erentiated,
if we can notice a pattern of repeating derivatives. See Examples 6-7.

Assignments

1. Reading Assignment

Read Section 7.2. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

7.2 # 5, 6, 9, 13*, 58, 2, 15*, 60*
*Hints: For #13, imitate Example 6. For #15, let u = (ln t)2 and dv = dt; also see Example 3.
For #60, imitate Example 7.

3. Practice Problems and Quality Solution

Practice: 7.2 # 8, 10, 20, 26, 59, 73, 61
Quality Solution: 7.2 # 16





Math 114, Integration by Parts (Section 7.2)

Name: Section:

Read Section 7.2, focusing on Examples 1-5. Take notes in your notebook, making sure to include words
and phrases in italics and formulas in blue boxes. Then answer the following questions.

Reading Questions

1. Straightforward IBP. Reread Examples 1, 2, 4, and 5.

(a) Imitate Examples 1 and 2 to find
R
x sinx dx.

(b) Imitate Example 4 to find
R
x

2 ln(x) dx.

(c) Imitate Example 5 to find
R
x

2 sin(x) dx. (Use IBP twice.)



Math 114, Integration by Parts (Section 7.2)

2. An antiderivative for lnx. Reread Example 3.

(a) What are u and v

0 in this example?

(b) What is the antiderivative of lnx?

3. What struck you in reading this section? What is still unclear? What questions do you have?



Math 114, Method of Partial Fractions (Section 7.4-I)

Main Points:

1. Finding simple partial fractions decompositions by hand

2. Using partial fractions decompositions to simplify integration

Overview

The method of partial fractions is an algebraic technique that can be helpful for integration. In

particular, the partial fractions decomposition is a way to rewrite a rational function as a sum of simpler
rational functions, as long as the degree of the numerator is smaller than the degree of the denominator. (If

the degree of the denominator is larger than the degree of the numerator, long division of polynomials can

be used first. See Example 5.) It is a reverse process to adding rational functions, and as such requires

“undoing the common denominator.”

We use the partial fractions decomposition to rewrite rational integrands as sums of simpler rational

functions. To evaluate these simpler integrals it may be necessary to use a substitution. Recall some basic

antiderivatives:

Z
dx

x

= ln |x| + C ;

Z
dx

x

p
=

1

(1� p)x

p�1
+ C , (p > 1) ;

Z
dx

1 + x

2
= arctan(x) + C

Assignments

1. Reading Assignment

Read Section 7.4, up to but not including the part about Trigonometric Substitutions. Take

notes in your notebook, and answer the reading questions.

2. Discussion Problems

7.4 # 15, 17, 38, 47

3. Practice Problems and Quality Solution

Practice: 7.4 # 16, 40, 48, 73

Quality Solution: 7.4 # 46
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Name: Section:

Read Section 7.4, up to but not including the part about Trigonometric Substitutions, focusing on

Examples 1-4. Take notes in your notebook, making sure to include words and phrases in italics and

formulas in blue boxes. Then answer the following questions.

Reading Questions

1. Denominator is Product of Distinct Linear Factors. Reread Examples 1 and 2. We will

imitate these examples to evaluate

Z
2x+ 3

x

2 � 4x� 5

dx.

The denomniator factors as (x+ 1)(x� 5), and the partial fractions decomposition is of the form

2x+ 3

x

2 � 4x� 5

=

A

x+ 1

+

B

x� 5

(a) Clear denominators by multiplying both sides by (x+ 1)(x� 5).

(b) Expand/foil the right hand side, and collect terms.

You should get: (A+B)x + (B � 5A). This means that

2x+ 3 = (A+B)x + (B � 5A)

Equating constant terms and coe�cients of x gives: 2 = A+B and 3 = B � 5A. Use these two

equations to solve for A and B.

(c) Use the partial fractions decomposition to evaluate

Z
2x+ 3

x

2 � 4x� 5

dx.
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2. Denominator has a Repeated Linear Factor. Reread Example 3. We will imitate this

example to evaluate

Z
x� 9

(x+ 5)(x� 2)

2
dx.

Since there is a repeated linear factor, the partial fractions decomposition is of the form:

x� 9

(x+ 5)(x� 2)

2
=

A

x+ 5

+

B

x� 2

+

C

(x� 2)

2

If we multiply both sides by (x+ 5)(x� 2)

2
and then equate constant terms and coe�cients of x, we

get A = �2/7, B = 2/7, C = �1. Use this partial fractions decomposition to evaluate the integral.

3. Denominator has a Quadratic that Cannot be Factored. Reread Example 4. Suppose we

wished to find the partial fractions decomposition for

x� 9

(x+ 5)(x

2 � 3x+ 9)

.

(a) Use the quadratic formula to show that x

2 � 3x+ 9 cannot be factored.

(b) What is the correct form of the partial fractions decomposition in this case? (You do not need

to find the coe�cients A, B, and C.)

4. What struck you in reading this section? What is still unclear? What questions do you have?



Math 114, Trigonometric Substitutions (Section 7.4-II)

Main Points:

1. Basic trig substitution: when integrand is similar to the derivatives arcsinx or arctanx.

2. More general trig substitution: when integrand involves x2 + a

2 or
p
a

2 � x

2; using triangle.

3. Completing the square before using a trig substitution

Overview

Recall that
Z

1p
1� x

2
dx = arcsinx + C and

Z
1

1 + x

2
dx = arctanx + C

For integrals that are very similar to these, a simple w-substitution or a basic trig substitution can be used,
as in Examples 7 and 10:

Ex. 7:

Z
1p

4� x

2
dx = arcsin(x2 ) + C Ex. 10:

Z
1

9 + x

2
dx = 1

3 arctan(
x

3 ) + C

More generally, when an integral involves something of the form
p
a

2 � x

2 or a

2 + x

2, a trig
substitution may be useful.

A trig substitution looks a little di↵erent from the simple w-substitutions we discussed in 7.1; instead of
identifying something in the integrand as an “inside function,” we let x be a trig function in terms of ✓
then change the variable of integration from x to ✓. We may use a trig identity or an appropriate right

triangle (using SOH-CAH-TOA and the Pythagorean Theorem) to simplify the integrand before
integrating. Often our new integrand involves integer powers of sin ✓ and/or cos ✓. The formulas in Part IV
of the table of integrals at the end of the book may be useful.

Finally, trig substitutions can also be useful after completing the square to rewrite part of the integrand
in the form

p
a

2 � (x� h)2 or a

2 + (x� h)2, as in Examples 12 and 13.

Assignments

1. Reading Assignment

Read the part about Trigonometric Substitutions in Section 7.4. Take notes in your notebook,
and answer the reading questions.

2. Discussion Problems

7.4 # 20, 21, 23, 54, 59*
*Use one of the formulas from IV in the table of integrals at the back of the book.

3. Practice Problems and Quality Solution

Practice: 7.4 #22, 24, 30, 55*, 72*
Quality Solution: 7.4 # 60*
*Use one of the formulas from IV in the table of integrals at the back of the book.
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Name: Section:

Read the part of Section 7.4 about Trigonometric Substitution. Take notes in your notebook, making sure
to include words and phrases in italics and formulas in blue boxes. Then answer the following questions.

Reading Questions

1. In each of the examples, a trig identity (“the Pythagorean identity”) is used to simplify the integrand
after making a substitution. What is this identity? (See the paragraph before Example 6.)

2. For each of the examples listed below, state the trig substitution that is used. In particular, state
both x and dx.

(a) Example 6:

(b) Example 7:

(c) Example 8:

(d) Example 10:

(e) Example 11:

(f) Example 12:

3. Using a Triangle. Reread Examples 8 and 9.

(a) Draw and label the triangle used in Example 9. (Make sure you label the angle ✓.)

(b) What is cos ✓, in terms of x?

(c) What would tan ✓ be, in terms of x, if we needed to find it?
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4. For each expression below, state an appropriate trig substitution that could be used to simplify. State
both x and dx.

(a)
p
a

2 � x

2

(b) a

2 + x

2

(c)
p

a

2 � (x� h)2

(d) a

2 + (x� h)2

5. What struck you in reading this section? What is still unclear? What questions do you have?



Math 114, Limits (Sections 1.7, 1.8, 1.9)

Main Points:

1. Limit as the technical underpinning of calculus

2. Limits describing local behavior of functions

3. Limits describing end behavior of functions

Overview

The formal mathematical notion of a limit is the essential technical idea underlying calculus: it is
necessary for careful discussions of continuous functions, derivatives, and definite integrals, which we have
studied, as well as for the convergence of improper integrals, infinite sequences, and infinite series, which
we have yet to study.

Limits are useful for describing local behavior of functions, especially where they are undefined. For
example, if we notice that the y-values of sin x

x

seem to get closer to y = 1 as the x-values get closer and
closer to zero, we say that the limit of sin x

x

as x approaches zero is 1. Note that this describes the
behavior of the function near but not at the number x = 0. In this example, the function is undefined at
x = 0, but this does not negate the observable trend that the y-values are approaching 1; it indicates that
the graph of has a hole at x = 0. (See Example 1.)

Definition Suppose f(x) is defined on some interval around c, except perhaps at the point x = c. Then
we write lim

x!c

f(x) = L and say the limit of f(x), as x approaches c, equals L if we can make the values of

f(x) as close to L as we like by taking x su�ciently close to c (on either side of c) but not equal to c.

Similarly we can talk about the limit from the left and the limit from the right, if we only mean to discuss
x approaching c from the left, or right, respectively.

When a function increases without bound (informally: the values “go to infinity”) we use the infinity
symbol (1) to denote the limit, even though the limit technically does not exist, because the values of the
function do not approach a specific number.

Limits are also useful for describing the end behavior of functions, i.e. what happens as x becomes larger
and larger (positive or negative). If a function f approaches a specific number L as x gets larger and larger
(positive), we say that the limit of f(x) as x approaches infinity is L and we write lim

x!1
f(x) = L.

Similarly, we write lim
x!�1

f(x) = L if f approaches L as x becomes larger and larger negative.

Assignments

1. Reading Assignment

Read Sections 1.7, 1.8, 1.9. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

1.7 # 3; 1.8 # 3, 5; 1.9 # 4, 6, 27, 29, 63, 74, 79, 80

3. Practice Problems and Quality Solution

Practice: 1.8 # 4, 16-21; 1.9 # 5, 7, 28, 65, 75, 81, 83
Quality Solution: 1.8 #54
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Name: Section:

Read Sections 1.7, 1.8, and 1.9 focusing on the following parts: “The Idea of a Limit,” “Definition of
Limit,” and “When Limits Do Not Exist” in Section 1.7, “One-Sided Limits” and “Limits and
Asymptotes” in Section 1.8, “Limits and Quotients,” “Limits of the Form 0/0 and Holes in Graphs,” and
“Calculating Limits at Infinity” in Section 1.9. Take notes in your notebook, making sure to include words
and phrases in italics and formulas in blue boxes. Then answer the following questions.

Reading Questions

1. Local Behavior For each item below, sketch a graph of a function with the desired properties.
(Examples in the section will work for some of these, but you could also create your own examples.)

(a) f(0) is undefined; lim
x!0

f(x) = 1

(b) f(0) is undefined; lim
x!0�

f(x) = �1; lim
x!0+

f(x) = 1

(c) f(0) is undefined; lim
x!0

f(x) does not exist

(d) f(0) is undefined; lim
x!0�

f(x) = �1; lim
x!0+

f(x) = 1
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2. End Behavior. Use what you know about the graphs of the functions to investigate the limits at
infinity.

(a) lim
x!1

e

x, lim
x!�1

e

x

(b) lim
x!1

x

3, lim
x!�1

x

3

(c) lim
x!1

ln |x|, lim
x!�1

ln |x|

3. What struck you in reading this section? What is still unclear? What questions do you have?



Math 114, L’Hopital’s Rule (Section 4.7)

Main Points:

1. Using l’Hopital’s rule to evaluate limits of quotients

2. Using limits of quotients to describe dominance

3. Variations on l’Hopital’s Rule

Overview

This section gives us a way to evaluate limits of the form 0
0 or 1

1 . The trick is to use l’Hopital’s rule,
which says that you can take the derivative of the top and the derivative of the bottom and then take the
limit of that. Intuitively, if both the numerator and the denominator are shrinking (or growing), we use
derivatives to tell us which one is shrinking (or growing) at a faster rate.

One application is determining the dominance of one function over another. For example, we can use
l’Hopital’s rule to prove that although lnx and x

p (for p > 0) both grow without bound as x increases, the
power function will always surpass the logarithmic function, eventually. We do this by looking at their
quotient and taking a limit as x approaches infinity.

lim
x!1

lnx

x

p

H
= lim

x!1

1
x

p · xp�1
= lim

x!1

1

p · xp

= 0

Note that the limit is of the form 1
1 , so it is valid to apply l’Hospital’s rule. The lnx in the numerator is

trying to make the limit go to infinity, but the x

p in the denominator is trying to make the limit go to zero;
it is a competition, and l’Hopital’s rule tells us who wins: since the final limit is zero the power function in
the denominator wins. This means the power function dominates the logarithmic function. This is
somewhat surprizing since for small p-values the power function does not appear to grow very quickly.

0 1 2 3 4 5

-2

-1

1

2

x0.1

ln(x)

0 1⋅1016 2⋅1016

10

20

30

40
x0.1

ln(x)

It is sometimes possible to use l’Hopital’s Rule to evaluate limits of the form 0 ·1, 1�1, 00, 10, or 11,
but it is necessary to rewrite the function as a quotient so that the limit is of the form 0

0 or 1
1 before

applying l’Hopital’s rule. See Examples 6, 7, and 8.

Assignments

1. Reading Assignment

Read Section 4.7. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

4.7 # 13, 17, 18, 41, 61, 71, 72

3. Practice Problems and Quality Solution

Practice: 4.7 # 16, 35, 42, 73, 74
Quality Solution: 4.7 # 36
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Name: Section:

Read Section 4.7, focusing on pages 242-245. Take notes in your notebook, making sure to include words
and phrases in italics and formulas in blue boxes. Then answer the following questions.

Reading Questions

1. l’Hopital’s Rule for Quotients. Reread Examples 1, 2, and 3.

(a) Imitate Example 1 to evaluate lim
x!0

e

x � e

�x

x

.

(b) Imitate Example 2 to evaluate lim
x!1

e

x � e

�x

x

.

2. Dominance. Consider the functions f(x) = e

x � e

�x and g(x) = x.

(a) Evaluate lim
x!1

g(x)

f(x)
.

(b) Given your answer to 2(a) and 1(b), which function dominates the other: f(x) or g(x)?
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3. Rewriting Indeterminate Forms. Reread Example 6.

(a) What is the form of the limit in this example?

(b) How do we rewrite the limit so as to be able to use l’Hopital’s rule?

4. What struck you in reading this section? What is still unclear? What questions do you have?



Math 114, Improper Integrals (Section 7.6)

Main Points:

1. Two kinds of improper integrals

2. Using limits to describe improper integrals

Overview

Our original discussion of the definite integral does not allow for integrating over an infinite interval or
integrating functions that are unbounded at a point, but such integrals, called improper integrals do
arise in applications. We use limits to describe such integrals: some of which have a finite value, some of
which do not. An improper integral with a finite value is called convergent, whereas an improper integral
without a finite value is called divergent.

Assignments

1. Reading Assignment

Read Section 7.6. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

7.6 # 3, 5, 7, 27, 28, 48

3. Practice Problems and Quality Solution

Practice: 7.6 # 4, 6, 9, 13, 21, 22
Quality Solution: 7.6 # 42





Math 114, Improper Integrals (Section 7.6)

Name: Section:

Read Section 7.6. Take notes in your notebook, making sure to include words and phrases in italics and
formulas in blue boxes. Then answer the following questions.

Reading Questions

1. Improper Integrals. Reread the first paragraph of the section.

(a) What two things did we assume in our original discussion of the definite integral
R
b

a

f(x)dx?

(b) What are the two kinds of improper integrals?

2. When the Limit of Integration is Infinite. Reread the discussion of the improper integralR1
1

1
x

2 dx at the beginning of the section as well as Example 1, about
R1
1

1p
x

dx, and the paragraph

following it.

(a) Which of these improper integrals converges? Which diverges?

(b) What is the di↵erence between the functions 1/x2 and 1/
p
x that makes the area under the

graph of 1/x2 aproach 1 as x ! 1, whereas the area under 1/
p
x grows very large?

3. Reread Example 3, about the family of improper integrals
R1
1

1
x

p dx.

(a) Does
R1
1

1
x

dx converge? If so, what is its value?

(b) Does
R1
1

1
x

3 dx converge? If so, what is its value?



Math 114, Improper Integrals (Section 7.6)

4. When the Integrand Becomes Infinite. All but one of the following integrals are improper.
Which integral is not improper? For each integral that is improper, identify the “trouble spot.”

(a)
R 1
0

1
x

2 dx

(b)
R 2
1

1
x

2 dx

(c)
R 2
1

1
(x�2)2 dx

(d)
R 2
0

1
(x�1)2 dx

5. What struck you in reading this section? What is still unclear? What questions do you have?



Math 114, Parametric Equations (Section 4.8-I)

Main Points:

1. Representing motion in the plane with parametric equations

2. Finding speed and velocity

Overview

Recall that motion along a straight line can be described by a position function s(t), and its derivative is

the velocity function v(t) =

ds

dt

. Velocity can be positive or negative; the sign indicates the direction of

motion. Speed, on the other hand, is always positive, and it is given by the magnitude (absolute value) of

the velocity.

Motion in the plane can be described by a pair of functions: x(t) and y(t), representing the x-coordinate

and y-coordinate of the position at time t, respectively. The equations for x and y in terms of t are called

parametric equations because they express x and y in terms of a common parameter, namely t.

The velocity of an object moving in the plane is also represented by a pair of functions: the velocity in the

x-direction is v

x

(t) =

dx

dt

and the velocity in the y-direction is v

y

(t) =

dy

dt

. The velocity vector is a way of

expressing both of these velocities simultaneously. Speed simply describes how fast an object moves along

the direction of its motion; it is the magnitude (length) of the velocity vector.

Assignments

1. Reading Assignment

Read the first part of Section 4.8, up to and including Example 8. Take notes in your notebook,

and answer the reading questions.

2. Discussion Problems

4.8 # 1, 7, 9, 21, 22, 31, 49

3. Practice Problems and Quality Solution

Practice: 4.8 # 3, 5, 23, 30, 39, 52

Quality Solution: 4.8 # 26
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Name: Section:

Read the first part of Section 4.8, up to and including Example 8. Take notes in your notebook, making

sure to include words and phrases in italics and formulas in blue boxes. Then answer the following

questions.

Reading Questions

1. Circular and Linear Motion. Reread Examples 1, 3, and 5.

(a) Describe the motion of the particle whose x and y coordinates at time t are given by the

equations x = cos(t/2) and y = sin(t/2).

(b) Write parametric equations for a particle moving with constant speed along a straight line from

(1, 2) to (�1, 3). What is the slope of this line?



Math 114, Parametric Equations (Section 4.8-I)

2. The motion of a particle in the xy-plane is described in terms of time, t, by

x = ln(t) y =

p
t t � 1

(a) Make a table of x and y coordinates for the curve along which the particle moves. (Round to

one decimal place.) Sketch a graph of the curve by plotting the points in your table. Indicate

with an arrow the direction in which the curve is traced as t increases.

t x y

1

2

3

4

5

6

7

8

9

10

1

0 0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

3

(b) Find the velocity in the x-direction, the velocity in the y-direction, and the speed when t = 1.

3. What struck you in reading this section? What is still unclear? What questions do you have?



Math 114, Parametric Curves (Section 4.8-II)

Main Points:

1. Representing a curve with parametric equations

2. Eliminating the parameter to find a Cartesian equation for a curve given by parametric equations

3. Tangent lines, slope and concavity of parametric curves

4. Area under parametric curve

Overview

Recall that the motion of a particle in the xy-plane can be described using parametric equations, which
describe the x-coordinate and the y-coordinate of the particle at a given time t. The path in the xy-plane
traced out by the particle over time is an example of a parametric curve, a curve whose coordinates are
given by equations expressed in terms of a common variable called the parameter. The parameter is
usually denoted t, suggesting time, but it is legitimate to use any variable for the parameter, and, in
applications, the parameter does not necessarily represent time. Sometimes it is possible to eliminate the

parameter to obtain an equation for the curve involving only x and y, as in Example 1, when the
parametric curve given by x = cos t, y = sin t was rewritten as x2 + y

2 = 1.

For a curve in the xy-plane, the slope of a tangent line (assuming there is a well-defined tangent line!)
to the curve at the point (a, b) is dy

dx

|(a,b). We use the Chain Rule to find dy

dx

for a curve in parametric form.

dy

dt

=
dy

dx

· dx
dt

) dy

dx

=
y

0(t)

x

0(t)
(if x0(t) 6= 0)

Note that this will give us a formula for dy

dx

in terms of t. Let m(t) be dy

dx

as a function of t. Then, to

determine concavity, we need d

2
y

dx

2 , which is the derivative of m with respect to x:

d

2
y

dx

2
=

dm

dx

=
m

0(t)

x

0(t)
(if x0(t) 6= 0)

Since dx = x

0(t)dt, the signed area between a parametric curve and the x-axis from x(↵) to x(�) is:

Z
x(�)

x(↵)
y dx =

Z
�

↵

y(t)x0(t) dt

as long as the curve is traversed exactly once, from left to right, as t increases from ↵ to �.

Assignments

1. Reading Assignment

Read the second part of Section 4.8, as well as the hand-out on finding area under a

parametric curve. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

4.8 # 27, 45, 50, 54, and one additional problem (see below)

3. Practice Problems and Quality Solution

Practice: 4.8 # 29, 53, 56, and one additional problem (see below)
Quality Solution: 4.8 # 28
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Areas Enclosed by Parametric Curves

Suppose we have a parametric curve lying above the x-axis and the curve is traversed exactly once, from
left to right, as the parameter moves from t = ↵ to t = �. The vertical distance from the curve to the
x-axis is given by y(t) and di↵erential is dx = x

0(t)dt. Thus the area between the curve and the x-axis,
from x(↵) to x(�) is:

A =

Z
x(�)

x(↵)
y dx =

Z
�

↵

y(t)x0(t) dt

Example 1. Find the area between the parametric curve x = t� 1, y = t

2 + t and the x-axis from x = 0
to x = 1.

Notice that as t increases, x = t� 1 also increases, so as “time” moves forward, the curve is traversed
from left to right. The parameter values corresponding to x = 0 and x = 1 are t = 1 and t = 2,
respectively. Notice that y is positive when 1  t  2. Thus the area between the curve and the x-axis
from x = 0 to x = 1 is:

A =

Z 2

1
y(t)x0(t) dt =

Z 2

1
(t2 + t)(1)dt =

Z 2

1
t

2 + t dt = ( 13 t
3 + 1

2 t
2)
��3
1

= 23
6

To check our work, we can eliminate the parameter and integrate with respect to x. Since x = t� 1,
t = x+ 1, and y = (x+ 1)2 + (x+ 1) = x

2 + 3x+ 2. Thus the area is

A =

Z 1

0
x

2 + 3x+ 2 dx = ( 13x
3 + 3

2x
2 + 2x)

��1
0

= 23
6

Example 2. Find the area enclosed by the parametric curve x = e

t, y = 1� t

2 and the x-axis.

Notice that as t increases, x = e

t also increases, so as “time” moves forward, the curve is traversed from
left to right. Also notice that the x-intercepts of the curve will occur when y = 0, namely when t = �1
and t = 1, and when t is between �1 and 1, y is positive. Thus the area enclosed by the curve and the
x-axis is given by the integral

A =

Z 1

�1
y(t)x0(t) dt =

Z 1

�1
(1� t

2)et dt

We can evaluate this integral using IBP. Let u = 1� t

2 and dv = e

t

dt. Then du = �2tdt and v = e

t.
Thus: Z

(1� t

2)et dt = (1� t

2)et �
Z

(et)(�2t) dt = (1� t

2)et + 2

Z
te

t

dt

We need to use IBP again: with u = t, dv = e

t

dt, we get du = dt and v = e

t, so

Z
te

t

dt = te

t �
Z

e

t

dt = te

t � e

t + C = (t� 1)et + C

Substituting back into the original integral, we get

Z
(1� t

2)et dt = (1� t

2)et + 2

Z
te

t

dt = (1� t

2)et + 2(t� 1)et + C = �(1� 2t+ t

2)et + C

So we can conclude

A =

Z 1

�1
(1� t

2)et dt = �(1� 2t+ t

2)et
��1
�1

= 0 + 4e�1 = 4/e
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To check our work, let’s eliminate a parameter and find the area again. To eliminate the parameter,
notice that x = e

t implies t = lnx. Thus y = 1� (lnx)2. This curve will have x-intercepts when
(lnx)2 = 1. Solving this equation for x gives:

(lnx)2 = 1 () lnx = ±1 () x = e

�1 or e1 () x = 1/e or e

Since 1� (lnx)2 is positive between x = 1/e and x = e, the area enclosed by the curve and the x-axis is:

A =

Z
e

1/e
1� (lnx)2 dx =

Z
e

1/e
1 dx �

Z
e

1/e
(lnx)2 dx = (e� 1/e) �

Z
e

1/e
(lnx)2 dx

We use IBP to evaluate this integral, with u = (lnx)2 and dv = dx. Then du = 2 ln x

x

and v = x, so

Z
(lnx)2 dx = x(lnx)2 �

Z
x

✓
2 lnx

x

◆
dx = x(lnx)2 � 2

Z
lnx dx

Using IBP again, with u = lnx, dv = dx, we have du = 1
x

dx and v = x, so

Z
lnx dx = x lnx �

Z
x

✓
1

x

◆
dx = x lnx �

Z
dx = x lnx� x+ C = x(lnx� 1) + C

Substituting back into the original integral, we have

Z
(lnx)2 dx = x(lnx)2 � 2x(lnx� 1) + C = x

�
(lnx)2 � 2 lnx+ 2

�
+ C

Therefore
Z

e

1/e
(lnx)2 dx = x

�
(lnx)2 � 2 lnx+ 2

���e
1/e

= e(1� 2 + 2)� (1/e)(1 + 2 + 2) = e� 5/e

And the area is

A =

Z
e

1/e
1� (lnx)2 dx = (e� 1/e) �

Z
e

1/e
(lnx)2 dx (e� 1/e)� (e� 5/e) = 4/e

This agrees with our answer from above.

Additional Discussion Problem.

Sketch the curve x = 3 cos ✓, y = 4 sin ✓, 0  ✓  2⇡, and find the area that it encloses. (Hint: Use
symmetry. Divide the area into four equal pieces and find the area of one piece, then multiply by four to
get the total area.)

Additional Practice Problem.

Sketch the curve x = 9 + e

t , y = t� t

2, and find the area enclosed by the curve and the x-axis.



Math 114, Parametric Curves (Section 4.8-II)

Name: Section:

Read the second part of Section 4.8, as well as the hand-out on finding area under a parametric

curve. Take notes in your notebook, making sure to include words and phrases in italics and formulas in
blue boxes. Then answer the following questions.

Reading Questions

1. Slope and Concavity. Reread Example 9 and the discussion of slope and concavity, p 255-256.

Consider the parametric curve in Example 9: x = t

3, y = 2t.

(a) According to Example 9, what are dy

dt

and dx

dt

?

(b) According to Example 9, what are the parametric equations for the tangent line to the curve at
the point (1, 2)? What is the slope of this line? (You may use the formula on page 251.)

(c) Using the equation for the slope of a parametric curve on page 255, what is dy

dx

as a function of
t? What is the slope of the parametric curve when t = 1?

(d) Find the point on the parametric curve corresponding to t = 1. Use this point and the slope you
found in (d) to find an equation for the tangent line to the curve at when t = 1.

(e) Let m(t) be the slope of the parametric curve as a function of t (the one you found in (d)).

What is m0(t)? To find d

2
y

dx

2 , divide m

0(t) by x

0(t). Is the curve concave up or concave down
when t = 1?



Math 114, Parametric Curves (Section 4.8-II)

2. Area. Consider the parametric curve in Example 9: x = t

3, y = 2t. We will find the area between
the curve and the x-axis from x = 0 to x = 8.

(a) Notice that when t increases, x = t

3 also increases, so the curve is traversed from left to right.
What are the t-values corresponding to x = 0 and x = 8? Call them ↵ and �, respectively.

(b) Check that the curve is above the x-axis (y � 0) when t is between ↵ and �.

(c) Using the fact that dx = x

0(t)dt, find dx.

(d) Find the area between the curve and the x-axis from x = 0 and x = 8 using the area formula:

A =

Z
x(�)

x(↵)
y dx =

Z
�

↵

y(t)x0(t) dt

3. What struck you in reading this section? What is still unclear? What questions do you have?



Math 114, Area Between Two Curves; Average Value (Section 5.4)

Main Points:

1. Area between two curves

2. Average value of a continuous function on an interval

Overview

Area Recall that we use a definite integral to find the (signed) area between a curve and the x-axis. If

f(x) � 0 on an interval [a, b], then the definite integral gives a literal area:

(area between f(x) and x-axis from x = a to x = b) =

Z b

a
f(x) dx

Similarly, if a function f(x) � g(x) on an interval [a, b], the area between the two curves from x = a

to x = b is obtained by subtracting the smaller area from the greater area:

(area between f(x) and g(x) from x = a to x = b) =

Z b

a
f(x) dx �

Z b

a
g(x) dx =

Z b

a

�
f(x)�g(x)

�
dx

When two continuous curves cross each other more than once, we can find the area of the region (or

regions) between the two curves using this idea, once we have determined (a) the intersection points of the

two curves and (b) which curve lies above the other in each region.

Average Value Another application of the integral is finding the average value of a quantity that

changes in a continuous way. For example, to estimate the average temperature in a given city over the

course of a year, we might take the average of the temperatures recorded at noon on the first day of each

month: add up these temperatures and divide by twelve. We could improve our estimate by using weekly,

daily, even hourly temperature recordings. The sums that are used to compute these averages are Riemann

sums; taking a limit as the number of recordings goes to infinity gives a definite integral. See the discussion

on page 304 for the details of the derivation of the average value formula:

(average value of f(x) on [a, b]) =

1

b� a

Z b

a
f(x) dx

Assignments

1. Reading Assignment

Read “Area Between Curves” and “The Definite Integral as an Average” in Section 5.4. Take

notes in your notebook, and answer the reading questions.

2. Discussion Problems

5.4 # 7, 13, 18, 41

3. Practice Problems and Quality Solution

Practice: 5.4 # 8, 15, 20*, 32

Quality Solution: 5.4 # 42*

*For # 20, do not try to find the intersection point exactly; estimate it by zooming in on the

graphs. For #42, use this fact: Since a

t
= e

ln(at)
= e

(ln a)t
, P = 112(1.011)

t
= 112e

(ln(1.011))t
.





Math 114, Area Between Two Curves; Average Value (Section 5.4)

Name: Section:

Read “Area Between Curves” and “The Definite Integral as an Average” in Section 5.4. Take notes in your

notebook, making sure to include words and phrases in italics and formulas in blue boxes. Then answer the

following questions.

Reading Questions

1. Area Between Two Curves. Reread Example 3. Now consider the region below the curve

y = 5x� x

2
and above the curve y = x.

(a) Where do the two curves cross? (Solve the equation x = 5x� x

2
for x.)

(b) Sketch the region.

(c) Find the area of this region by subtracting one definite integral from another.

2. Average Value

(a) Reread Example 6. If V (t) represents the value, in dollars, of a Ti↵any lamp t years after 1975,

write an expression (involving an integral) that represents the average value of the lamp over the

period 1975-2010.



Math 114, Area Between Two Curves; Average Value (Section 5.4)

(b) Find the average value of the function f(x) = 5x� x

2
over the interval [0, 5]. Sketch a graph of

the function on this interval. Does your answer make sense?

3. What struck you in reading this section? What is still unclear? What questions do you have?



Math 114, Areas and Volumes (Section 8.1)

Main Points:

1. Approximating areas and volumes with Riemann sums of “slices”

2. Calculating area and volume exactly using definite integrals

Overview

Recall that the definite integral can be used to find the area under a curve. The area is first approximated

by a Riemann sum, which is the sum of the areas of rectangles, whose heights are given by the y-values of

the curve and whose widths are �x, small changes in x. Taking a limit as the number of rectangles goes to

infinity gives the exact area.

We generalize this procedure to find areas of various regions in the plane: we slice the region into thin

strips, approximate each strip by a rectangle, add up the areas of the rectangles, and take a limit as the

number of rectangles goes to infintity. If we can represent this sum as a Riemann sum, then the limit is a

definite integral, and we can try to find the area using an antiderivative.

In particular, to find the area of a region enclosed by two curves in the plane, we usually slice the

region vertically (in which case the thickness of the strips is �x) or horizontally (in which case the

thickness of each strip is �y). When slicing vertically, the heights of the approximating rectangles will be

given by the vertical distance between the two curves, which can be computed by subtracting the height of

the bottom curve from the height of the top curve: h(x) = Top(x)� Bottom(x). When slicing horizontally,

the widths of the approximating rectangles wil be given by the horizontal distance betwen the two curves,

which can be computed by subtracting the left curve from the right curve: w(y) = Right(y)� Left(y).

To find the volume of a solid, we slice the solid into thin slices, whose crossectional area is known from

geometry (for example, the area of a circle, rectangle, or triangle.) We then approximate the volume of

each slice by multiplying the crossectional area by the thickness, add up these volumes, and take a limit as

the number of slices goes to infinity. Again, if we can represent the sum as a Riemann sum, then the limit

is a definite integral and we can try to find the volume using an antiderivative.

Assignments

1. Reading Assignment

Read Section 8.1. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

8.1 # 7, 11, 12, 14, 27, 42

3. Practice Problems and Quality Solution

Practice: 8.1 # 2, 3, 17, 28, 29, 41

Quality Solution: 8.1 # 30





Math 114, Areas and Volumes (Section 8.1)

Name: Section:

Read Section 8.1. Take notes in your notebook, making sure to include words and phrases in italics and

formulas in blue boxes. Then answer the following questions.

Reading Questions

1. Area: Vertical and Horizontal Slices. Reread Example 1. Now consider the triangle in

Exercises 1 and 4, in the exercises at the end of the section.

(a) Use the formula A =

1
2bh to find the area of this triangle.

(b) Find the area of the triangle using vertical slices, as in Exercise 1. Note that the (very small)

width of each slice is �x and the height of each slice is h(x) = 2x.

(c) Find the area of the triangle using horizontal slices, as in Exercise 4. Note that the (very small)

height of each slice is �y. Use similar triangles to find the width w of each slice in terms of y.

You will integrate w(y) with respect to y, with y ranging from y = 0 to y = 6.
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2. Volume. Reread the paragraphs between Example 2 and Example 3, which show how to find the

volume of a cone.

(a) In Example 3, we slice the cone into horizontal slices. Why not slice the cone vertically, as

shown in Figure 8.5?

(b) When we slice the cone horizontally, each slice is approximately a disk. We will find the volume

of each disk and add up the volumes of each disk to approximate the volume of the cone.

What is the thickness of each disk?

What is the radius of each disk?

What is volume of each disk?

(c) What is the Riemann sum that approximates the volume of the cone? What is the integral that

expresses the exact volume of the cone? (Don’t evaluate the integral; just write it down.)

3. What struck you in reading this section? What is still unclear? What questions do you have?



Math 114, Applications to Geometry: Volumes by Slicing (Section 8.2-I)

Main Points:

1. Finding volumes of revolution by slicing solid into disks or washers

2. Volumes of solids constructed by standing squares, semicircles, or triangles on edge in a planar region.

Overview

Recall our strategy for finding the volume of a solid: we slice the solid into thin slices, whose crossectional

area is known from geometry, approximate the volume of each slice, add up these volumes, and take a limit

as the number of slices goes to infinity. If we can represent the sum as a Riemann sum, then the limit is a

definite integral and we can try to find the volume using an antiderivative.

We now focus our attention on finding volumes of solids constructed from planar regions in a couple

specific ways.

Solids of revolution are constructed by rotating a planar region about some axis. When we slice a solid

of revolution perpendicularly to the axis of rotation, each slice can be approximated by a circular disk or

washer (a circular disk with a hole in the center), whose volume is easy to compute. See Examples 1-3.

Given a planar region, we may also construct a solid by standing squares, semicircles, or triangles on
edge in this region. See Example 4.

Assignments

1. Reading Assignment

Read Section 8.2 up to but not including the part about arc length. Take notes in your

notebook, and answer the reading questions.

2. Discussion Problems

8.2 # 7, 13, 44-48

3. Practice Problems and Quality Solution

Practice: 8.2 # 8, 11, 50-54, 62

Quality Solution: 8.2 # 14





Math 114, Applications to Geometry: Volumes by Slicing (Section 8.2-I)

Name: Section:

Read Section 8.2 up to but not including the part about arc length. Take notes in your notebook, making

sure to include words and phrases in italics and formulas in blue boxes. Then answer the following

questions.

Reading Questions

1. Rotating Around the x-axis. Reread Example 1.

(a) Sketch the planar region described in Example 1. Then, in a separate drawing, sketch the solid

obtained by revolving this region around the x-axis.

(b) We slice the solid perpendicularly to the axis of rotation. What is the shape of a typical slice?

(A circular disk or a circular washer?) What is the volume of a typical slice?

(c) Write (but do not evaluate) the integral representing the volume of the solid.

(d) Now try Exercise 1 in the exercises at the end of the section. Include a sketch of the solid.



Math 114, Applications to Geometry: Volumes by Slicing (Section 8.2-I)

2. Rotating Around Another Horizontal Line. Reread Example 3.

(a) Sketch the planar region described in Example 3 and the line y = 3. Then, in a separate

drawing, sketch the solid obtained by revolving this region around the line y = 3.

(b) We slice the solid perpendicularly to the axis of rotation. What is the shape of a typical slice?

(A circular disk or a circular washer?) What is the volume of a typical slice?

(c) Write (but do not evaluate) the integral representing the volume of the solid.

3. Another Way to Construct Solids. Reread Example 4

(a) What shape is the typical slice in this example? What is the volume of a typical slice?

(b) Write (but do not evaluate) the integral representing the volume of the solid.

4. What struck you in reading this section? What is still unclear? What questions do you have?



Math 114, Applications to Geometry: Arc Length (Section 8.2-II)

Main Points:

1. Arc length formulas

2. Using Mathematica for numerical integration

Overview

We can use a definite integral to express the length of a curve: we divide the curve into short segments,
approximate the length of each segment by assuming the segment is straight, add up these approximate
lengths to obtain a Riemann sum, and then take a limit as the number of segments approaches infinity.

As usual, if it is possible to find an antiderivative for the integrand, we can use the Fundamental Theorem
of Calculus to evaluate the integral and find the arc length of the curve exactly. However, it turns out that,
in arc length problems, frequently the integrand does not have an elementary antiderivative; numerical
methods are needed to approximate the integral. We can use Mathematica to plot the curves and to
estimate their arc lengths numerically.

The curve y = x

3 from x = 0 to x = 5 in Example 5 can be plotted with the Mathematica Plot command:

Plot[x^3, {x, 0, 5}]

The integral for the arc length is
R 5
0

p
1 + (3x2)2 dx. It can be estimated numerically in Mathematica:

NIntegrate[Sqrt[1+(3x^2)^2], {x, 0, 5}]

The parametric curve x = 2 cos t, y = sin t, 0  t  2⇡ in Example 6 can be plotted with ParametricPlot:

ParametricPlot[{2*Cos[t], Sin[t]}, {t, 0, 2*Pi}]

The integral for its arc length is
R 2⇡
0

p
4 sin2 t+ cos2 t dt and can be estimated numerically by:

NIntegrate[Sqrt[4(Sin[t])^2 + (Cos[t])^2], {t, 0, 2*Pi}]

Assignments

1. Reading Assignment

Read the part of Section 8.2 about arclength. Take notes in your notebook, and answer the
reading questions.

2. Discussion Problems

8.2 # 19*, 21*, 23, 25, 27*, 90**
*Use Mathematica to plot the curve and to estimate the arc length using numerical integration.
Use the Log command for the natural log in Mathematica.

**Hints: You will need to use the fact that

q
1 +

�
1
2 (e

x � e

�x)
�2

= 1
2 (e

x + e

�x). Use algebra to

show this is true. Also, at the end of the problem, you need to solve e

b � e

�b = 10 for b. Use a
graph to estimate b instead of trying to find b exactly.

3. Practice Problems and Quality Solution

Practice: 8.2 # 20*,22, 26, 78
Quality Solution: 8.2 # 28*
*Use Mathematica to plot the curve and estimate the arc length using numerical integration.
Absolute value is Abs.





Math 114, Applications to Geometry: Arc Length (Section 8.2-II)

Name: Section:

Read the part of Section 8.2 about arclength. Take notes in your notebook, making sure to include words
and phrases in italics and formulas in blue boxes. Then answer the following questions.

Reading Questions

1. Reread Example 5.

(a) Use the Plot command in Mathematica to plot the curve.

(b) What is the integral for the arc length in this example?

(c) Use the NIntegrate command in Mathematica to estimate the arc length, and write your
estimate below.

(d) Now consider the curve y = x

2 from x = 0 to x = 3. Use the Plot command in Mathematica to
plot the curve. Sketch the curve below.

(e) What is the integral for the arc length of y = x

2 from x = 0 to x = 3?

(f) Use the NIntegrate command in Mathematica to estimate the arc length, and write your
estimate below. Does this estimate seem reasonable? Explain.



Math 114, Applications to Geometry: Arc Length (Section 8.2-II)

2. Reread Example 6.

(a) Use the ParametricPlot command in Mathematica to plot the curve.

(b) What is the integral for the arc length in this example? Use the NIntegrate command in
Mathematica to estimate the arc length.

(c) Now consider the parametric curve x = 20 sin t, y = t

2, 0  t  2⇡. Use the ParametricPlot
command in Mathematica to plot the curve. Sketch the curve below.

(d) What is the integral for the arc length of x = 20 sin t, y = t

2, 0  t  2⇡?

(e) Use the NIntegrate command in Mathematica to estimate the arc length.

3. What struck you in reading this section? What is still unclear? What questions do you have?



Math 114, Applications of the Integral (Sections 8.4, 8.5, 8.6)

Sections 8.4, 8.5, and 8.6 cover various practical applications of the integral, primarily in physics and
economics. Instead of introducing this material with reading and discussion assignments, we will have
group presentations on topics from each section.

Preparing and Giving the Presentation

1. Read and discuss the relevant section (or portion of a section) of the textbook.

2. Solve your assigned presentation problem. An asterisk indicates a challenge problem.

3. Write up your solution (only one per group) and turn it in on the day that you present.

- Your written solution will count as a quality solution. (+1) for challenge problem.

4. Create and rehearse your presentation. (Time yourselves!)

5. Outline your presentation on the board, before class starts, on the day of your presentation.

6. Present your topic, in a 7-10 minute oral presentation, in which each group member speaks.

- Explain the physics or economics background and why an integral is appropriate in this
situation; then explain the solution to your assigned problem.

- The oral presentation will count towards your grade like a quality solution.

- Graded for: clarity of delivery, depth of conceptual explanations, correctness of content.

1. Presentation Problems

Each group of students will present one or two of the eight application topics below. I will email the class
to solicit input on the assignment of groups and topics. Once you have been assigned a topic, choose one of
the presentation problems for your topic, listed below. You will receive a grade for the written solution of
your problem as well as for the oral presentation of your problem. If you choose a challenge problem, the
written solution receives a bonus, but the oral presentation does not.

8.4 (Nov 10) Density: 14 or 18*; Center of Mass: 22 or 26*
8.5 (Nov 13) Work: 12 or 24*; Pressure: 26a* or 30; Energy: KE-1*; Gravitation: G-1*
8.6 (Nov 15) Income Stream: 18 or 34*; Consumer/Producer Surplus: 36*

Note. For kinetic energy and gravitation, some outside research will be needed in order to prepare an
adequate discussion of the background in the presentation. This will be taken into account in the grading
of the presentation. See the back of this page for the kinetic energy and gravitation problems.

2. Practice Problems

After hearing the presentations on a given section, you will have an opportunity to start the practice
problems in class. The practice problems are due at the beginning of the next class.

P 8.4 (due Nov 13) Density: 5, 9, 13, 16, 17, 19; Center of Mass: 8, 21, 24, 25, 27
P 8.5 (due Nov 15) Work: 4, 5, 11, 13, 15, 17; Force and Pressure: 7, 28, 31, 32, 33
P 8.6 (due Nov 17) Income Stream: 10, 11, 21, 23, 25; Consumer/Producer Surplus: 39, 41

3. Quality Solutions

Choose two of the following problems (not both on the same topic) to write up nicely, as quality solutions.
These are due at the beginning of class Nov 17, which is the first class after we have finished all the
presentations. All of these are challenge problems and will receive the (+1) bonus.

QS 8.4: Density: 32, 34 Center of Mass: 28, 30
QS 8.5: Work: 36, 38; Pressure: 34; Energy: KE-2; Gravitation: G-2 or G-3.
QS 8.6: Income Stream: 32; Consumer/Producer Surplus: 40



Math 114, Applications of the Integral (Sections 8.4, 8.5, 8.6)

Kinetic Energy. The kinetic energy E of a particle of mass m moving at a speed v is E = 1
2mv2.

KE-1. Presentation: Find the kinetic energy of a thin uniform rod of mass 10 kg and length 6
m rotating, like a helicopter blade, about an axis perpendicular to the rod at its midpoint,
with an angular velocity of 2 radians per second. (Hint: The speed v of an object traveling
with angular velocity !, in radians per unit time, in a circle of radius r is v = r!. Why
does this make sense?)

KE-2. QS: Find the kinetic energy of a phonograph record of uniform density, mass 50 gm and
radius 10 cm rotating at 33 1

3 revolutions per minute. (See hint in previous problem.)

Gravitation. The force F of gravitational attraction between two particles of mass m1 and m2 at a
distance r apart is F = Gm1m2/r2, where G is a constant called the universal gravitational constant.

G-1. Presentation: What is the force of gravitational attraction between a thin uniform rod of
mass M and length ` and a particle of mass m lying in the same line as the rod at a
distance a from one end? (You should get GMm/(a(a+ `)) for your final answer.)

G-2. QS: Two long, thin, uniform rods of lengths `1 and `2 lie on a straight line with a gap
between them of length a. Suppose their masses are M1 and M2, respectively. What is the
force of gravitational attraction between the two rods? (Hint: Use the answer from the
presentation problem.)

G-3. QS: Find the gravitational force exerted by a thin uniform ring of mass M and radius a
on a particle of mass m lying on a line perpendicular to the ring through its center.
Assume m is at a distance y from the center of the ring.



Math 114, Sequences (Section 9.1)

Main Points:

1. Mathematical meaning of sequence

2. Recursive sequences

3. Convergence of sequences

4. Monotone bounded sequences

Overview

A sequence is an infinite list of numbers in a definite order. The numbers in the sequence are called
terms. One way of describing a sequence is by listing the first several terms, as in these examples:

1, 2, 3, 4, 5, 6, . . . 1,�1, 1,�1, 1,�1, . . . 1, 1/2, 1/4, 1/8, . . .

Another way of describing a sequence is by giving a formula for the nth term of the sequence. For example
the three sequences above could be represented with the following three formulas:

an = n , n � 1 bn = (�1)n , n � 0 cn = 1/2n , n � 0

Some sequences are more easily described recursively. In a recursively defined sequence, the first term (or
the first few terms) are given along with a formula for how to find successive terms. For example, the first
sequence above could be defined recursively as: a1 = 1, an = an�1 + 1 for n > 1.

If the numbers an approach a specific, finite number L as n ! 1, then the sequence is said to converge,
and L is called the limit of the sequence. If a sequence does not have a limit, it is said to diverge.

Assignments

1. Reading Assignment

Read Section 9.1. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

9.1B # 16, 17, 20, 21, 24, 27, 65, 66, 70, 75

3. Practice Problems and Quality Solution

Practice 9.1A: # 4, 8, 11, 28, 29, 31, 36, 37, 39, 59
Quality Solution 9.1A: # 60

Practice 9.1B:# 19, 22, 68, 69
Quality Solution 9.1B: # 72, 73, 76





Math 114, Sequences (Section 9.1)

Name: Section:

Read Section 9.1. Take notes in your notebook, making sure to include words and phrases in italics and
formulas in blue boxes. Then answer the following questions.

Reading Questions

1. Sequences. Reread Examples 1 and 3. Give the first six terms for the following sequences:

(a) sn = 2n + 1, n � 1.

(b) sn = sn�1 + sn�2 for n > 2 and s1 = 1, s2 = 1

2. Convergence of Sequences What are the “two facts” that we can use to calculate the limit of a
sequence, in addition to what we know about the limits of functions? (These are listed right before
Example 5.)
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3. What struck you in reading this section? What is still unclear? What questions do you have?



Math 114, Geometric Series (Section 9.2)

Main Points:

1. Mathematical meaning of series

2. Finite and infinite geometric series

Overview

Adding the terms in a sequence results in a series. Of course, one ought to be suspicious of whether adding
infinitely many numbers can actually result in a finite number. Sometimes it does; sometimes it doesn’t. A
convergent series is one that does have a finite sum; a divergent series does not have a finite sum. We
will use limits to make the notion of convergence precise, as we did in our discussion of improper integrals.

We may try to approximate the sum (if it exists) of an infinite series a0 + a1 + a2 + . . . by adding up a
large (but finite) number of terms. Adding up the first n terms results in the nth partial sum:
Sn = a0 + a1 + a2 + · · ·+ an�1. In hopes of obtaining better and better approximations, we add more and
more terms (i.e. we let n approach infinity). However, the partial sums may grow unboundedly (or exhibit
other wild behavior); in such cases the series diverges. If, in contrast, the partial sums approach a specific
finite number, as we add more and more terms, the series converges and the sum S of the series is defined
to be the limit of the partial sums: S = lim

n!1
Sn.

One of the simplest kinds of series is a geometric series, one in which the ratio of successive terms is a
constant, called the common ratio. For example, 3 + 6 + 12 + 24 + 48 + . . . is a geometric series with
common ratio 2, and 3 + 3/2 + 3/4 + 3/8 + 3/16 + . . . is geometric with common ratio 1/2. It is clear that
the first geometric series diverges; that the second series converges is perhaps not quite as obvious, but still
relatively straightforward. Imagine that there are six cupcakes left after your birthday party, so you eat
three yourself, then give half of what’s left to your friend (3/2 cupcakes). Your friend eats half of what you
gave her and gives the rest (3/4 a cupcake) to you, who again eat half and give the rest to her (3/8 a
cupcake). If you continue in this way indefinitely, how much will the two of you eat? Well, certainly not an
infinite amount, because you only started with six cupcakes!

It turns out that a geometric series diverges when the absolute value of the common ratio is greater than or
equal to one (again, this is fairly obvious) and converges when the absolute value of the common ratio is
less than one. This can be proven rigorously, by looking at the limit of partial sums.

Assignments

1. Reading Assignment

Read Section 9.2. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

9.2 # 1, 2, 8, 10, 24, 28, 29, 55, 57

3. Practice Problems and Quality Solution

Practice 9.2: # 3, 4, 6, 9, 12, 26, 46, 56
Quality Solution 9.2: # 30
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Name: Section:

Read Section 9.2. Take notes in your notebook, making sure to include words and phrases in italics and
formulas in blue boxes. Then answer the following questions.

Reading Questions

1. Sum of a Finite Geometric Series. Reread the part entitled “Sum of a Finite Geometric
Series.” Now consider the finite geometric series 5 + 5/3 + 5/9 + 5/27.

(a) What is the first term of this geometric series?

a =

(b) What is the common ratio for this geometric series?

x =

(c) How many terms are there in this geometric series?

n =

(d) Calculate the sum of this finite geometric series, using the formula in the box.

2. Sum of an Infinite Geometric Series. Reread the part entitled “Sum of an Infinite Geometric
Series.” Consider the infinite geometric series: 5 + 5/3 + 5/9 + 5/27 + . . .

(a) Does the series converge or diverge? How can you tell, without taking a limit?

(b) Give a formula for Sn, the nth partial sum of this series.

(c) Calculate the sum of the infinite series using the formula in the box.
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3. What struck you in reading this section? What is still unclear? What questions do you have?



Math 114, Convergence of Series (Section 9.3)

Main Points:

1. Convergence properties of series

2. Comparison with improper integrals

3. The harmonic series and p-series

Overview

In the previous section, we looked at a special family of infinite series: infinite geometric series; we used the
formula for the sum of a finite geometric series to find the sum of a convergent infinite geometric series,
using the limit of partial sums. We now expand our view to look at convergence and divergence of series
more generally.

Recall that an infinite series a0 + a1 + a2 + . . . is convergent if the limit of partial sums is finite. In this
case the sum of the series S is the limit of partial sums: S = lim

n!1
Sn, where Sn = a0 + a1 + · · ·+ an�1. A

series is divergent if it does not converge.

Theorem 9.2 lists several straightforward convergence properties of series. Make sure to include the full
statement of this theorem in your notes.

We next use what we know about improper integrals to discuss the convergence and divergence of infinite
series. The Riemann sum of an improper integral is an infinite series; the convergence or divergence of the
integral can help us determine the convergence or divergence of the series. This idea is made precise in the

integral test. The integral test allows us to determine convergence/divergence in an important family of
examples: the p-series, which includes as a special case the harmonic series.

Assignments

1. Reading Assignment

Read Section 9.3. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

9.3 # 1, 4, 23, 25, 33, 37
Hints: For 23, 25, and 33, use Theorem 9.2. For 33, also use the fact that ln(2n) = ln(2) · n.

3. Practice Problems and Quality Solution

Practice 9.3: # 2, 5, 6, 24, 34, 35
Quality Solution 9.3: # 38, 8*
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Name: Section:

Read Section 9.3. Take notes in your notebook, making sure to include words and phrases in italics and
formulas in blue boxes. Then answer the following questions.

Reading Questions

1. The Limit of Partial Sums. Reread Example 1.

(a) What is an in this example? Sn?

an = Sn =

(b) What is lim
n!1

an? lim
n!1

Sn?

lim
n!1

an = lim
n!1

Sn =

(c) What is the sum of the series?

S =

2. Convergence Properties of Series. Reread Theorem 9.2.

(a) Use Theorem 9.2.1 to explain why

1X

n=1

�
( 12 )

n�1 + ( 13 )
n�1

�
is convergent and to find the sum.

Hint: Notice

1X

n=1

( 12 )
n�1 is geometric; the first term is a = 1 and the common ratio x = 1

2 .

(b) Use Theorem 9.2.3 to explain why

1X

n=1

n

n+ 1
diverges.

(c) Use (b) and Theorem 9.2.4 to explain why

1X

n=1

5n

n+ 1
diverges.



Math 114, Convergence of Series (Section 9.3)

3. An Important Family of Examples. Reread Examples 3, 4, and 5.

(a) What is the name of the series

1X

n=1

1

n

? Does it converge or diverge?

(b) State whether the following series converge or diverge. (Use Theorem 9.2 and Example 5.)

1X

n=1

1

n

6

1X

n=1

1

n

1/2

1X

n=1

5

n

6

1X

n=1

✓
2

n

6
+

3

n

2

◆

1X

n=1

3

n

1/2

4. What struck you in reading this section? What is still unclear? What questions do you have?
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Main Points:

1. Testing series for convergence

2. The Ratio Test

Overview

Recall that the sum of a convergent infinite series is the limit of its partial sums; if the limit of partial sums
does not exist, the series is divergent and does not have a finite sum. In many cases, finding a fomula for
the nth partial sum is impractical, but, fortunately, there are ways to determine whether or not a series
converges without having to compute the limit of partial sums explicitly. An example we have discussed is
the Integral Test; several other tests are discussed in Section 9.4. We will focus on the Ratio Test.

Recall that a geometric series converges if the ratio of successive terms (which is a constant, called the
common ratio) has absolute value less than one. For a series

P
an that is not geometric, the ratio an+1/an

of successive terms will not be a constant, but if the absolute value of the ratio approaches a constant less
than one as n increases, the series converges. This is the idea behind the Ratio Test.

Assignments

1. Reading Assignment

Read the part of Section 9.4 about the Ratio Test. Take notes in your notebook, and answer
the reading questions.

2. Discussion Problems

9.4 # 16, 17, 21, 55, 64

3. Practice Problems and Quality Solution

Practice 9.4: # 15, 19, 20, 56, 70
Quality Solution 9.4: # 18
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Name: Section:

Read the part of Section 9.4 entitled “Comparison with a Geometric Series: The Ratio Test.” Take notes
in your notebook, making sure to include words and phrases in italics and formulas in blue boxes. Then
answer the following questions.

Reading Questions

1. Reread Example 6, in which

1X

n=1

an =

1X

n=1

1

n!
.

(a) What is an in this example? What is |an+1|/|an|?

an =
|an+1|
|an|

=

(b) What is lim
n!1

an? lim
n!1

|an+1|
|an|

?

lim
n!1

an = lim
n!1

|an+1|
|an|

=

(c) What does the Ratio Test allow use to conclude about this series?

2. Reread Example 7. Consider the first series in this example,

1X

n=1

1

n
.

(a) What is an for this series? What is |an+1|/|an|?

an =
|an+1|
|an|

=

(b) What is lim
n!1

an? lim
n!1

|an+1|
|an|

?

lim
n!1

an = lim
n!1

|an+1|
|an|

=

(c) What does the Ratio Test allow use to conclude about this series? What do we know about this
series from Section 9.3?
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3. Now consider the series

1X

n=1

3n

n!
.

(a) What is |an+1|/|an|?

Hints: Here are a few things to keep in mind: (1) dividing by a fraction is the same as
multiplying by the reciprocal, (2) for any number a, we know that an+1/an = a, and (3) as in
Example 6, the ratio of successive factorials cancels nicely: n!/(n+ 1)! = 1/(n+ 1).

(b) What is lim
n!1

|an+1|
|an|

?

(c) What does the Ratio Test allow use to conclude about this series?

4. What struck you in reading this section? What is still unclear? What questions do you have?
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Main Points:

1. Power series as “polynomials with infinitely many terms”

2. Domain of power series, radius of convergence

3. Using geometric series to find rational function for power series

Overview

Not all functions that turn out to be interesting or useful for applications can be described in terms of
familiar functions. For example, the function e

�x

2

is used in probability, but its antiderivative is not
elementary: it cannot be expressed in terms of familiar functions. It is called the “error function,”
sometimes denoted erf. Another example is the “Bessel functions,” which are used to model
electromagnetic waves, heat conduction, and vibrating membranes.

One way to represent such functions is as power series, which can be thought of as polynomials with
infinitely many terms. (Of course, there is the question of convergence.) In general, a power series about
x = a is of the form:

C0 + C1(x� a) + C2(x� a)2 + C3(x� a)3 + . . .

The domain of a power series consists of all real numbers x for which the series converges. In general, the
domain of a power series will be an interval centered around x = a. The distance from zero to either
endpoint is called the radius of convergence. The endpoints of the interval may or may not be included.
We typically use the Ratio Test to determine the radius of convergence. Usually, further work is needed to
determine convergence at the endpoints.

Two extreme cases are worth discussing separately: (1) if the power series converges only at x = a, the
domain is simply {a} and the radius of convergence is R = 0 and (2) if the power series converges for all x,
the domain is (�1,1) and we say that the radius of convergence is R = 1.

The geometric series
1P

n=0
x

n converges when |x| < 1 and diverges otherwise. Viewed as a power series, it is

a function with domain (�1, 1). We can find a rational function that agrees with the power series on its
domain using the formula for the sum of a geometric series:

1

1� x

=

1X

n=0

x

n = 1 + x + x

2 + x

3 + . . .

We can use this fact to find power series representations of some functions that are similar to this one. For
example, with first term 3 and common ratio 4x,

3

1� (4x)
=

1X

n=0

3 · (4x)n =

1X

n=0

(3 · 4n)xn = 3 + 12x + 48x3 + . . .

This converges when |4x| < 1, or |x| < 1
4 . Thus the domain of the power series is (� 1

4 ,
1
4 ).

Assignments

1. Reading Assignment

Read Section 9.5. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

9.5 # 5, 7, 11, 17, 18, 19, 35, 47

3. Practice Problems and Quality Solution

Practice 9.5: # 12, 13, 24, 36, 49
Quality Solution 9.5: # 16
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Name: Section:

Read Section 9.5, focusing on the ideas of power series and radius of convergence. Take notes in your
notebook, making sure to include words and phrases in italics and formulas in blue boxes. Then answer the
following questions.

Reading Questions

1. Geometric Power Series. Reread Example 2.

(a) Determine whether the given power series converges for x = 1.

(b) Notice that this is a geometric series with first term 1 and common ratio x

2 . Use what you know
about the convergence of geometric series to determine for what values of x the series converges.

(c) Use the formula for the sum of an infinite geometric series to write this power series as a
rational function.

2. Non-geometric Power Series. Reread Examples 3 and 4. Notice that these power series are not

geometric, so we need to use the Ratio Test to determine for what values of x the series converges.

(a) In Example 3, what is a
n

? What is |a
n+1|/|an|?

(b) Continuing with Example 3, what is lim
n!1

|a
n+1|/|an|?
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(c) Continuing with Example 3, for what values of x is lim
n!1

|a
n+1|/|an| < 1? (In other words, for

what values of x does the series converge?)

(d) Now look at Example 4. In this example, what is a
n

? What is |a
n+1|/|an|?

(e) Continuing with Example 4, what is lim
n!1

|a
n+1|/|an|?

(f) Continuing with Example 4, for what values of x is lim
n!1

|a
n+1|/|an| < 1? (In other words, for

what values of x does the series converge?)

3. What struck you in reading this section? What is still unclear? What questions do you have?



Math 114, Taylor Series Revisited (Sections 10.2, 10.3A)

Main Points:

1. Recall the notion of a Taylor series

2. Binomial series expansion

3. Finding new Taylor series by substitution

Overview

Recall our study of Taylor polynomials at the beginning of the semester. The first three Taylor

polynomials for a function f(x) centered at a given point x = a are simply the constant approximation:

T0(x) = f(a), the linear approximation T1(x) = f(a) + f

0
(a)(x� a), and the quadratic approximation

T2(x) = f(a) + f

0
(a)(x� a) +

1
2f

00
(a)(x� a)

2
. In general the Taylor coe�cient C

n

for the (x� a)

n

term in

the Taylor polynomial is C

n

= f

(n)
(a)/n!, where f

(n)
refers to the nth derivative of f , so

T

n

(x) = f(a) + f

0
(a)(x� a) +

f

00
(a)

2!

(x� a)

2
+

f

000
(a)

3!

(x� a)

3
+ . . . +

f

(n)
(a)

n!

(x� a)

n

Each successive Taylor polynomial gives a better approximation for f(x) near x = a. We can describe the

family of all Taylor polynomials for a given function centered at a given point using Taylor series.

Now that we have studied infinite series and power series in particular, we are in a position to discuss

Taylor series in more depth and with more rigor. In particular, now that we have a precise understanding

of convergence, we can find the radius of convergence of a Taylor series analytically (using the Ratio Test).

We take this as an opportunity to review the Taylor series for e

x

, sinx, and cosx and to discuss an

important family of examples from Section 10.2 that we did not discuss at the beginning of the semester:

the family of binomial series expansions, namely Taylor series for functions of the form f(x) = (1 + x)

p

,

for some real number p. In the first part of Section 10.3, we discuss how to find new Taylor series by

substitution.

Assignments

1. Reading Assignment

Read Section 10.2 and the beginning up Section 10.3, up through Example 1 on page 553. Take

notes in your notebook, and answer the reading questions.

2. Discussion Problems

10.2 # 1, 4, 39, 61; 10.3 # 1, 4, 61

3. Practice Problems and Quality Solution

Practice 10.2 # 7, 40, 41; 10.3 # 7, 15

Quality Solution 10.3: # 2
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Name: Section:

Read Section 10.2 and the beginning up Section 10.3, up through Example 1. Take notes in your notebook,

making sure to include words and phrases in italics and formulas in blue boxes. Then answer the following

questions.

Reading Questions

1. Binomial Series Expansions. Consider the function f(x) =

1
1+x

.

(a) Repeatedly di↵erentiate f(x): find f

0
(x), f

00
(x), f

000
(x), and f

(4)
(x). Simplify along the way!

(b) Evaluate f(x) and its derivatives at x = 0: find f(0), f

0
(0), . . . , f

(4)
(0).

(c) Find the first five Taylor coe�cients for f(x) centered at x = 0, using the fact that C

n

=

f

(n)(0)
n! .

(d) Write out the beginning of the Taylor series for f(x), centered at x = 0. Include the first five

terms.
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(e) Compare your answer to the answer you would obtain by using the formula for the binomial

series expansion in the bottom of page 549, as in Example 2.

2. New Series by Substitution. Reread the beginning of Section 10.3, including Example 1. Using

the Taylor series for f(x) =

1
1+x

, find a Taylor series for g(x) =

1
1+2x . For what values of x does this

series converge?

3. What struck you in reading this section? What is still unclear? What questions do you have?
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Main Points:

1. Integrating and di↵erentiating Taylor series

2. Multiplying and substituting Taylor series

3. Applications of Taylor series

Overview

Taylor series give us a way to replace hard-to-work-with functions with simpler ones, namely polynomials.

For example, the error function in probability is erf(x) =

2p
⇡

R
x

0 e

�t

2

dt. By the Fundamental Theorem of

Calculus, erf(x) is an antiderivative for e

�x

2

. Since we know the Taylor series about t = 0 for e

t

, we can

find the Taylor series for e

�t

2

by substitution, then if we simply treat this series like a polynomial with

infinitely many terms, we can easily integrate it to find a Taylor series about x = 0 for erf(x). This means

we have replaced the mysterious erf function with a family of simple approximating functions, polynomials!

Treating Taylor series as polynomials with infinitely many terms, we can di↵erentiate them, integrate

them, and multiply them to obtain new Taylor series. We can then use these Taylor series to answer

questions about hard-to-work-with functions, using the approximating polynomials.

Assignments

1. Reading Assignment

Read Section 10.3. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

10.3 # 6, 25, 32, 34, 41, 46

3. Practice Problems and Quality Solution

Practice 10.3: # 8, 33, 42, 47

Quality Solution 10.3: # 40
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Name: Section:

Read Section 10.3. Take notes in your notebook, making sure to include words and phrases in italics and

formulas in blue boxes. Then answer the following questions.

Reading Questions

1. Di↵erentiating a Taylor Series. Reread Example 2. Continue this example to find a Taylor

series about x = 0 for

2

(1� x)

3
from the series for

1

(1� x)

2
, as outlined below.

(a) What is the derivative of

1

(1� x)

2
? (Rewrite the function as (1� x)

�2
, then use the power rule

and the chain rule.)

(b) What is the Taylor series about x = 0 for

1

(1� x)

2
? (This is given in Example 2.)

(c) Di↵erentiate the Taylor series about x = 0 for

1

(1� x)

2
term by term.

(d) What is the Taylor series about x = 0 for

2

(1� x)

3
? (This should be your answer in (c).)
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2. Integrating a Taylor series. Reread Example 3. Imitate the ideas in this example to find a

Taylor series about x = 0 for ln(1� x) from the series for

1

1� x

, as outlined below.

(a) Find

Z
1

1� x

dx.

(b) What is the Taylor series about x = 0 for

1

1� x

? (Look back at Example 1.)

(c) Integrate the Taylor series about x = 0 for

1

1� x

term by term. (Don’t forget the +C!)

(d) What is the Taylor series about x = 0 for ln(1� x)? (Use your answer from (c).)

3. What struck you in reading this section? What is still unclear? What questions do you have?


