Math 114-01/03, Unit 4 Practice Fall 2017

1. Determine whether the series converges or diverges. (To justify each of your conclusions, cite a
general fact, and show how it applies to the specific example.) If the series converges, find the sum.
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2. For each expression below, state whether it represents a sequence or a series. Then determine
whether it converges or diverges. Justify your conclusions carefully.
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3. Find the center and radius of convergence of the power series.
2 (=1)na” = (z+2)" = 2% (x —2)"
WS G e g ey
n=1 n=1 n=1
4. Find the fourth-degree Taylor polynomial centered at x = a for the function f(x).
1
(a) f(z)=sin(z), a =m/2 (b) f(z) =In(z), a=1 () flz) =5 7 a=1

5. In this problem, use the known Taylor series for e*, sin x, and cosz, around z = 0.

(a) Find the Taylor series for the following functions about « = 0, using known Taylor series:
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(b) Evaluate the following limits using the appropriate Taylor series, and check your work using

L’Hospital’s Rule.
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(¢) Find the Taylor series for the sine integral function, Si(t) = fot ST dy, centered at t = 0.

(d) Estimate the integral using the first three nonzero terms of the Taylor series: fol cos(z?) du.



