
Math 114, Derivatives and Linear Approximation (Sections 2.4, 3.9)

Main Points:

1. The practical meaning of the derivative

2. Using the derivative for linear approximation

3. Using the second derivative (concavity) to determine whether the linear approximation is an
over-estimate or an under-estimate.

Overview and Example

Recall that the derivative is an instantaneous rate of change. Graphically, this instantaneous rate of
change is represented as the slope of a tangent. We can use an instantaneous rate of change of a
quantity to make predictions about how much the quantity will change in the near future. This is the idea
of linear approximation.

For example, if I have 2 inches of flood water in my basement at 9:00 am and the rate at which flood water
is rising at that moment is 4 inches per hour, then I expect to have 3 inches (3 inches = 2 inches + (4
inches per hour)·(1/4 hour)) of water in my basement at 9:15. However, it would be unreasonable to
predict that I would have 98 inches of water (98 inches = 2 inches + (4 inches per hour)·(24 hours)) by
9:00 am the next day, because, while it is reasonable to assume that the rate at which water is rising is
approximately constant over a short interval of time (like 15 minutes), it is unreasonable to expect the rate
to be constant over a long interval of time (24 hours.)

This is the intuitive idea behind using a tangent line to approximate a function locally. If the height, in
inches, of water in my basement t hours after 9:00 am is h(t). Then the fact that there is two inches of
water in my basement at 9:00 am means h(0) = 2, and the fact that the water is rising at a rate of 4 inches
per hour at 9:00 am means that h0(0) = 4. Locally, the tangent line, represented by the linear function
L(t) = 2 + 4t, is a reasonable approximation for h(t). So the height of water at 9:15 is reasonably
approximated as: h(1/4) ⇡ L(1/4) = 2 + 4(1/4) = 3 inches. However, the height of the water at 9:00 the
following day, which is h(24), cannot reasonably be approximated by L(24) = 2 + 4(24) = 98 inches.

Assignments

1. Reading Assignment

Read Section 2.4 to review the practical meaning of the derivative; you may omit Example 5.
Read Section 3.9, on linear approximation, focusing on the first part, “The Tangent Line
Approximation,” page 169. Hopefully this material is familiar to you from Calc I.

Words and phrases in italics are important words and phrases. Formulas in blue boxes are
important formulas. Pay attention to these things and take notes on them in your notebook!

2. Discussion Problems

2.4 #1, 2, 36, 3.9 # 1, 4, 8, 15, 21

3. Practice Problems and Quality Solution

Practice: 2.4: #5, 6, 3.9 # 2, 5, 12(a)(b), 18 Quality Solution: 3.9 #6



Math 114, Taylor Polynomials (Section 10.1)

Main Points:

1. Extending the idea of linear approximation to quadratic approximation

2. Taylor polynomials of higher degree

Overview

Recall that if a function is concave up, then a forward linear approximation will be an under-estimate.
(Similarly, if a function is concave down, then a forward linear approximation will be an under-estimate.)
We can improve our estimate, taking concavity into account by adding a quadratic term whose coe�cient
comes from the second derivative. This is the idea behind a quadratic approximation. Extending this idea,
we can make better and better estimates by constructing polynomials of higher degree whose coe�cients
come from higher order derivatives. Such polynomials are called Taylor polynomials.

Assignments

1. Reading Assignment

Read Section 10.1, focusing on pages 538-539. Take notes in your notebook, making sure to
include words and phrases in italics and formulas in blue boxes. Then answer the reading
questions on next two pages.

2. Discussion Problems

10.1 # 3, 13, 17, 23

3. Practice Problems and Quality Solution

Practice: 10.1 # 1, 15, 18, 25-28, 29
Quality Solution: 10.1 #12
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Math 114, Taylor Series (Section 10.2)

Main Points:

1. The idea of a Taylor series as a Taylor polynomial of infinite degree

2. Limitations in the scope of a Taylor series approximating a function

Overview

Recall that the quadratic approximation for a function improves the linear approximtion for the function

by taking concavity into account, and this trend continues with higher degree Taylor polynomials: the

higher the degree, the better the approximation, at least locally. In this section, we consider the family of

all Taylor polynomials for a given function, centered at a given point, by looking at a Taylor series.

Assignments

1. Reading Assignment

Read Section 10.1, focusing on pages 546-547. Take notes in your notebook, making sure to

include words and phrases in italics and formulas in blue boxes. Then answer the reading

questions on next page.

2. Discussion Problems

10.2 # 3, 5, 16, 27(a)*

*For #27(a), you may use Mathematica or a graphing calculator to graph the Taylor

polynomials.

3. Practice Problems and Quality Solution

Practice: 10.2 # 6, 11, 17, 25*, 31

Quality Solution: 10.2 #10

*For #25, you may use Mathematica or a graphing calculator to graph the Taylor polynomials.
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Math 114, The Definite Integral: Area and Net Change (Sections 5.1, 5.2)

Main Points:

1. Estimating accumulated change over a long interval

2. Estimating the area area under a curve using left and right sums

3. The definite integral as exact accumulated change or exact area

Overview

Recall that we can approximate the change in a quantity over a short interval of time using an

instantaneous rate of change. (This is linear approximation.) If we want to approximate the accumulated

change in a quantity over a long interval of time, we can divide the long interval into short subintervals,

estimate the changes in the quantity over each subinterval, and then add up these changes to get an

estimation for the accumulated change over the long time interval. (Such a sum is called a Riemann sum.)

Dividing up the long interval into more subintervals and repeating the process improves our estimate.

If we have a graph of a positive rate function r(t) versus time, then the multiplication of the rate at time

t = a by a short time interval �t represents the area of a rectangle of height r(a) and width �t. Thus

estimating net change can be understood as estimating the area under a curve using rectangles, whose

heights are determined by the graph of the function. Dividing the interval into more subintervals results in

more rectangles; the more rectangles we use, the better our estimate will be.

For examples with distance and velocity, see Section 5.1.

We find exact accumulated change and exact areas under curves using limits. As the number of subintervals

(rectangles) increases, the approximation gets better and better; the limit is called the definite integral.

If a rate function r(t) is negative, this means that the quantity is decreasing and the net change over a time

interval is negative. Because of this, when we talk about the definite integral as the “area under the

curve,” we really mean that it is the signed area between the curve and the x-axis: the signed area is

positive when the curve is above the x-axis and negative when the curve is below the x-axis.

Assignments

1. Reading Assignment.

Read 5.1 and 5.2. Take notes, and answer the reading questions.

2. Discussion Problems.

5.1 # 15(a)(b)(c), 36, 37, 5.2 # 11, 29, 41

3. Practice Problems and Quality Solution.

Practice: 5.1 # 4, 39, 5.2 # 13

QS: 5.1 #14
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Math 114, Numerical Methods for Definite Integrals (Section 7.5)

Main Points:

1. Midpoint Rule, Trapezoidal Rule

2. Over/under estimates, errors

3. Simpson’s Rule

Overview

Recall that we can estimate the value of a definite integral using a left sum, which uses rectangles whose
heights are determined by the value of the function on the left endpoints of the subintervals, or a right
sum, which uses rectangles whose heights are determined by the value of the function the right endpoints.

In this section, we refine our estimates using more sophisticated numerical methods. The midpoint rule
uses rectangles whose heights are determined by the value of the function at the midpoints of the
subintervals. The trapezoidal rule takes the average of the left and right sums. Simpson’s rule takes a
weighted average of the estimates obtained from the midpoint and trapezoidal rules.

The reasons for averaging the left and right sums in the trapezoidal rule and for taking a weighted average
of the midpoint and trapezoidal rule in Simpson’s rule become apparent when we look at the errors of our
estimates. For example, for an increasing function the left sum underestimates the integral (a positive
error) whereas the right sum overestimates the integral (a negative error). This is the motivation for
averaging the two (to cancel out the errors) in the trapezoidal rule.

Assignments

1. Reading Assignment

Read Section 7.5. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

7.5 # 1, 15, 17, and one additional problem; see below.

3. Practice Problems and Quality Solution

Practice: 7.5 # 4, 16, and one additional problem; see below.
Quality Solution: 7.5 #18
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Math 114, Numerical Methods for Definite Integrals (Section 7.5)

Additional Discussion Problem

We will approximate the value of
R 1
0 cos(x2) dx. Use Mathematica for your computations.

(a) Use Mathematica to graph the function: Plot[Cos[x^2], {x, 0, 1}]. Sketch the graph below. In
particular, make sure you have the concavity correct.

(b) Approximate the integral using LEFT(4), RIGHT(4), MID(4), and TRAP(4). Use Mathematica, and
round to six decimal places.

(c) Use your sketch of the graph in (a) to determine which of your estimates in (b) are overestimates and
which are underestimates. Which is your best underestimate? Which is your best overestimate?

(d) Approximate the integral using SIMP(4).
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Math 114, Numerical Methods for Definite Integrals (Section 7.5)

Additional Practice Problem

In this problem we will estimate I =
R 1
0 sin( 12x

2) dx.

(a) Use Mathematica to graph the function: Plot[Sin[(1/2)x^2], {x, 0, 1}]. Sketch the graph
below. In particular, make sure you have the concavity correct.

(b) List the values LEFT(n), RIGHT(n), MID(n), and TRAP(n), and I in increasing order (smallest to
largest).

(c) Use Mathematica to compute LEFT(5), RIGHT(5), MID(5), TRAP(5), and SIMP(5).
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Math 114, The Fundamental Theorem of Calculus (Sections 5.3, 6.1, and 6.4)

Main Points:

1. FTC 1: Evaluating definite integrals using antiderivatives.

2. FTC 2: Constructing antiderivatives using the definite integral.

Overview

Recall that, given a function r(t) for the rate at which some quantity Q is changing, we can estimate the
net change in Q over a long time interval [a, b] by dividing up the long interval into short subintervals,
using linear approximation to estimate the change in Q over each subinterval, and adding up these changes.
The exact accumulated net change is obtained by taking a limit of Riemann sums; this limit is the definite

integral: �Q = Q(b)�Q(a) =
R
b

a

r(t) dt.

This is the idea behind the first part of the Fundamental Theorem of Calculus, which says that if

F (x) is a function with a continuous derivative f(x), then
R
b

a

f(x)dx = F (b)� F (a). Since f is a
derivative of F , we say F is an antiderivative of f . This means that we can evaluate definite integrals
exactly whenever we can find antiderivatives.

This same insight allows us to construct antiderivatives. Again, suppose r(t) is a function that tells the
rate at which some quantity Q is changing. Now suppose we want to know the accumulated net change in
Q for many di↵erent time intervals. We fix a given intial time t = a and let A(x) be the net change from
t = a to t = x, for many di↵erent x-values. Graphically, this is represented by finding the (signed) area
between the graph of r and the t-axis from a to x. So A(x) is sometimes called the “area-so-far” function.
We know that this area is represented by a definite integral: A(x) =

R
x

a

r(t) dt.

Since A(x) tells the net change in Q from t = a to t = x, We can find a formula for Q(x) if we know the
initial quantity Q0:

Q(x) = Q0 +

Z
x

a

r(t) dt = Q0 +A(x)

Since r is the derivative of Q, Q is an antiderivative of r. Notice that every choice of initial value Q0 will
give an antiderivative for r. In particular, choosing Q0 = 0 shows that the area-so-far function itself is an
antiderivative for r.

This is the idea behind the second part of the Fundamental Theorem of Calculus, which says that,
for a continuous function f(x), we can construct an antiderivative function F (x) as follows: choose a
number a in the domain of f and let F (x) =

R
x

a

f(t) dt.

Assignments

1. Reading Assignment

Read Sections 5.3, 6.1, and 6.4. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

5.3 # 16, 19, 6.1 # 7, 6.4 # 3*, 9
*For 6.4 #3, replace the lower limit with 0.00001, as in Example 1, page 342, and use SIMP(2).

3. Practice Problems and Quality Solution

Practice: 5.3 # 21, 6.1 # 3, 10, 6.4 # 8
Quality Solution: 6.4 #22
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Math 114, Introduction to Di↵erential Equations (Sections 6.3, and 11.1)

Main Points:

1. New terms: di↵erential equation, general solution of di↵erential equation

2. Finding solutions to simple di↵erential equations, verifying solutions to di↵erential equations

3. New terms: initial value problem, initial condition, particular solution, equillibrium solution

4. Solving an initial value problem, given the general solution and an initial condition

Overview

A di↵erential equation is simply an equation involving a derivative. A simple example is the equation
dy

dx

= 2x. Notice that this equation is true for the function y = x

2 and the function y = x

2 + 5, since these
are antiderivatives of 2x. Such functions are called particular solutions of the di↵erential equation. The
most general form of the solution is, of course, y = x

2 + C, where C is a real number. This is called the
general solution. It represents a whole family of solutions. Section 6.3 discusses di↵erential equations
like this, that can be solved using antiderivatives.

Another simple di↵erential equation is dy

dx

= 2y. This equation cannot be solved using antiderivatives as
above, but we might be able to solve it by gussing and checking. Can you think of a function whose
derivative is simply 2 times itself? How about y = e

2x? We can check that this is a solution simply by
di↵erentiating: d

dx

e

2x = 2 · e2x. This shows that, when y = e

2x, dy

dx

= 2y, i.e. y = e

2x is a solution to the
di↵erential equation. It turns out that every function of the form y = Ce

2x, where C is a real number, is
also a solution, as we can check: d

dx

Ce

2x = C(2e2x) = 2 · (e2x).

We can find particular solutions from the general solution, if we also have an initial condition. For
example, if the general solution is y = Ce

2x and we have the initial condition y(0) = 5, we can find the
particular solution by substituting in x = 0 and y = 5 and solving for C as follows: 5 = Ce

2·0 = Ce

0 = C.
Thus the particular solution is y = 5e2x. A problem of this sort is called an initial value problem.

Even without a formula for the general solution of a di↵erential equation, we can often determine quite a
bit about the family of solutions: we can use qualitative analysis to sketch graphs and numerical methods
to generate tables of data approximating the solution. Sections 11.1-11.3 discuss these methods in depth.

Assignments

1. Reading Assignment

Read Sections 6.3 and 11.1. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

6.3 # 5, 7, 12, 11.1 # 3, 9, 11, 25

3. Practice Problems and Quality Solution

Practice: 6.3 # 8, 10, 16*, 11.1 # 2, 8, 12
*For 6.3.16, your final answer will be in terms of k.
Quality Solution: 11.1 #24
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Math 114, Slope Fields (Section 11.2)

Main Points:

1. Generating a slope field from a di↵erential equation

2. Sketching solution curves using a slope field

Overview

Given a di↵erential equation that expresses

dy

dx

in terms of x and y, we can generate a table of values with

x and y as inputs and

dy

dx

as outputs. Thus, for each point (x, y) in the plane, we can sketch the slope,

dy

dx

,

of the solution curve passing through that point (as long as it is defined). The collection of all these short

lines is called a slope field, and it gives use a way to sketch solution curves for the di↵erential equation.

Assignments

1. Reading Assignment

Read Section 11.2. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

11.2 # 6, 13, 17

3. Practice Problems and Quality Solution

Practice: 11.2 # 5, 14

Quality Solution: 11.2 # 18
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Math 114, Separation of Variables and Modeling (Sections 11.4 and 11.5)

Main Points:

1. Using separation of variables to find the general solution of certain di↵erential equations

2. Writing a di↵erential equation to model a real-life situation

3. Stable and unstable equillibrium solutions

Overview

A separable di↵erential equation is one that can be written in the form: y0 = f(x)g(y). For example:

y0 = xy3 y0 = x2 y�2 y0 = 6x2/(2y + cos y)

are separable di↵erential equations. To solve a separable di↵erential equation, write the derivative in
Leibnitz notation (dy/dx instead of y0), write the di↵erential equation in “di↵erential form,” i.e. with all
the x-values on one side, with dx and all the y-values on the other side, with dy, and integrate both sides.

An example of a separable di↵erential equation that occurs in application is the equation modelling
unconstrained population growth. This model operates under the assumption that a population will grow
at a rate directly proportional to the size of the population, P . In other words dP

dt is proportional to P .

dP

dt
= k P (for some k > 0)

The positive constant k is the constant relative growth rate of the population.

According to Newton’s Law of Cooling, the rate at which temperature of an object decreases is
proportional to the temperature di↵erence between the object and its surroundings. Thus the temperature
of a cooling object can also be modelled by a di↵erential equation involving a proportionality statement.

In general, when a quantity A is directly proportional to a quantity B, that means that there is a positive
constant, say k, such that A = kB. The constant k is called the constant of proportionality.

An equillibrium solution of a di↵erential equation is a constant solution. Equillibrium solutions for a
di↵erential equation of the form y0 = g(y) can be found by letting y0 = 0 and solving for y, since this
enables us to find y-values at which the rate at which y is changing is zero.

Assignments

1. Reading Assignment

Read Sections 11.4 and 11.5. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

11.4 # 3, 11, 14, 11.5 # 8, 27

3. Practice Problems and Quality Solution

Practice: 11.4 # 6, 11.5 # 18, 22
Quality Solutions: 11.4 # 16, 11.5 # 30*
*11.5.30 is a Challenge Problem. It will be graded on a more lenient scale.
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Math 114, Integration by Substitution (Section 7.1)

Main Points:

1. Guess-and-check to “undo the chain rule”

2. Changing variables in an integral: choose inside function“w” and then dw = w

0(x)dx

3. Two methods for using substitution in definite integrals

Overview

So far the only strategy we have for finding antiderivatives is to recognize them as derivatives of familiar
functions, sometimes using algebra or trigonometry to rewrite a function first. Can you recognize 2e2x as
the derivative of a familiar function? It is the derivative of e2x. The constant factor of 2 comes from the
chain rule. For very simple examples, we can “undo the chain rule” in this way. (See Examples 1 and 2.)

For less simple examples, it helps to perform a change of variables. We give the “inside function” a name,
say w(x) and transform an integral having x as the variable of integration to an integral having w as the
variable of integration. Remember that the chain rule says

d

dx

F (w(x)) = F

0(w(x)) · w0(x)

Thus, if F is an antiderivative for f (i.e. F 0 = f),

Z
f(w)w0(x) dx =

Z
f(w) dw = F (w(x)) + C

since w

0(x) dx = dw. (See Examples 3-7.)

We can sometimes use substitution even if the integrand is not a constant multiple of something of the
form f(w(x))w0(x). In particular, as long as the integrand can be rewritten as w0(x) times something
entirely in terms of w, substitution is worth trying. See Examples 12-13.

Since substitution is a technique for finding antiderivatives, it is also useful for definite integrals. The trick
is to be careful not to plug in x-values for w. There are two ways to do this. A two-step method requires
finding the indefinite integral first; as an alternative, you can transform the limits of integration along with
the whole integral. See Examples 9-11.

Assignments

1. Reading Assignment

Read Section 7.1. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

7.1 # 19, 25, 34, 38, 57, 61, 75

3. Practice Problems and Quality Solution

Practice: 7.1 # 10, 20, 29, 32, 58, 72, 77, 135
Quality Solution: 7.1 # 64
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Math 114, Integration by Parts (Section 7.2)

Main Points:

1. IBP as “reversing the product rule” to exchange a hard integral for an easier one

2. Two tricks: letting v

0 = 1; noticing a pattern of repeating derivatives

Overview

Integration by parts is a way to use the “reverse product rule” to exchange a hard integral for an easier
one. Recall that the product rule can be written as:

d

dx

u(x) v(x) = u

0(x) v(x) + u(x) v0(x)

Restating in terms of integrals and rearranging gives:

Z
u(x) v0(x) dx = u(x) v(x) �

Z
u

0(x)v(x) dx

Using the shorthand du = u

0(x) dx and dv = v

0(x) dx, we can rewrite this as:

Z
u dv = uv �

Z
v du

IBP is a good strategy to try when the integrand is a product of two functions. In order for IBP to work,
you need to be able to di↵erentiate one of the functions and anti-di↵erentiate the other. Choose u to be the
function you want to di↵erentiate and v

0 to be the function you want to anti-di↵erentiate.

Sometimes IBP can be used even when the integrand does not look like a product of two functions. In
particular, if we know the derivative of the integrand, we can let the whole integrand be u and we can let
v

0 = 1. For example, this works for
R
lnx dx and

R
arcsinx dx. See Example 3.

Sometimes IBP can be used even when neither part of the integrand becomes simpler when di↵erentiated,
if we can notice a pattern of repeating derivatives. See Examples 6-7.

Assignments

1. Reading Assignment

Read Section 7.2. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

7.2 # 5, 6, 9, 13, 15*, 2
*Hint: Imitate Example 6.

3. Practice Problems and Quality Solution

Practice: 7.2 # 8, 10, 20, 26, 73
Quality Solution: 7.2 # 16
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Math 114, Method of Partial Fractions (Section 7.4-I)

Main Points:

1. Finding simple partial fractions decompositions by hand

2. Using partial fractions decompositions to simplify integration

Overview

The method of partial fractions is an algebraic technique that can be helpful for integration. In

particular, the partial fractions decomposition is a way to rewrite a rational function as a sum of simpler
rational functions, as long as the degree of the numerator is smaller than the degree of the denominator. (If

the degree of the denominator is larger than the degree of the numerator, long division of polynomials can

be used first. See Example 5.) It is a reverse process to adding rational functions, and as such requires

“undoing the common denominator.”

We use the partial fractions decomposition to rewrite rational integrands as sums of simpler rational

functions. To evaluate these simpler integrals it may be necessary to use a substitution. Recall some basic

antiderivatives:

Z
dx

x

= ln |x| + C ;

Z
dx

x

p
=

1

(1� p)x

p�1
+ C , (p > 1) ;

Z
dx

1 + x

2
= arctan(x) + C

Assignments

1. Reading Assignment

Read Section 7.4, up to but not including the part about Trigonometric Substitutions. Take

notes in your notebook, and answer the reading questions.

2. Discussion Problems

7.4 # 15, 17, 39, 48

3. Practice Problems and Quality Solution

Practice: 7.4 # 16, 41, 49, 72

Quality Solution: 7.4 # 44
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Math 114, Trigonometric Substitutions (Section 7.4-II)

Main Points:

1. Basic trig substitution: when integrand is similar to the derivatives arcsinx or arctanx.

2. More general trig substitution: when integrand involves x2 + a

2 or
p
a

2 � x

2; using triangle.

3. Completing the square before using a trig substitution

Overview

Recall that
Z

1p
1� x

2
dx = arcsinx + C and

Z
1

1 + x

2
dx = arctanx + C

For integrals that are very similar to these, a simple w-substitution or a basic trig substitution can be used,
as in Examples 7 and 10:

Ex. 7:

Z
1p

4� x

2
dx = arcsin(x2 ) + C Ex. 10:

Z
1

9 + x

2
dx = 1

3 arctan(
x

3 ) + C

More generally, when an integral involves something of the form
p
a

2 � x

2 or a

2 + x

2, a trig
substitution may be useful.

A trig substitution looks a little di↵erent from the simple w-substitutions we discussed in 7.1; instead of
identifying something in the integrand as an “inside function,” we let x be a trig function in terms of ✓
then change the variable of integration from x to ✓. Then we use a trig identity to simplify the integrand
before integrating. If we are evaluating an indefinite integral, it is necessary to change variables back from
✓ to x after integrating. Often this requires constructing a triangle and labeling the sides using
SOH-CAH-TOA and the Pythagorean Theorem, as in Example 9.

Finally, trig substitutions can also be useful after completing the square to rewrite part of the integrand
in the form

p
a

2 � (x� h)2 or a

2 + (x� h)2, as in Examples 12 and 13.

Assignments

1. Reading Assignment

Read the part about Trigonometric Substitutions in Section 7.4, starting on page 380. Take
notes in your notebook, and answer the reading questions.

2. Discussion Problems

7.4 # 20, 21, 23, 55, 61*
*Use formula IV-20 in the Table of Integrals at the back of the textbook.

3. Practice Problems and Quality Solution

Practice: 7.4 #22, 24, 31, 56*, 71*
Quality Solution: 7.4 # 60*
*Use formulas IV-18 and IV-21, IV-22 for 56, 60, and 71 respectively.
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Math 114, Limits (Section 1.8)

Main Points:

1. Limit as the technical underpinning of calculus

2. Limits describing local behavior of functions

3. Limits describing end behavior of functions

Overview

The formal mathematical notion of a limit is the essential technical idea underlying calculus: it is

necessary for careful discussions of continuous functions, derivatives, and definite integrals, which we have

studied, as well as for the convergence of improper integrals, infinite sequences, and infinite series, which

we have yet to study.

Limits are useful for describing local behavior of functions, especially where they are undefined. For

example, if we notice that the y-values of

sin x

x

seem to get closer to y = 1 as the x-values get closer and

closer to zero, we say that the limit of

sin x

x

as x approaches zero is 1. Note that this describes the

behavior of the function near but not at the number x = 0. In this example, the function is undefined at

x = 0, but this does not negate the observable trend that the y-values are approaching 1; it indicates that

the graph of has a hole at x = 0. (See Example 1.)

Definition Suppose f(x) is defined on some interval around c, except perhaps at the point x = c. Then

we write lim

x!c

f(x) = L and say the limit of f(x), as x approaches c, equals L if we can make the values of

f(x) as close to L as we like by taking x su�ciently close to c (on either side of c) but not equal to c.

Similarly we can talk about the limit from the left and the limit from the right, if we only mean to discuss

x approaching c from the left, or right, respectively.

When a function increases without bound (informally: the values “go to infinity”) we use the infinity

symbol (1) to denote the limit, even though the limit technically does not exist, because the values of the

function do not approach a specific number.

Limits are also useful for describing the end behavior of functions, i.e. what happens as x becomes larger

and larger (positive or negative). If a function f approaches a specific number L as x gets larger and larger

(positive), we say that the limit of f(x) as x approaches infinity is L and we write lim

x!1
f(x) = L.

Similarly, we write lim

x!�1
f(x) = L if f approaches L as x becomes larger and larger negative.

Assignments

1. Reading Assignment

Read Section 1.8. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

1.8 # 1, 3, 29, 51, 56, 59

3. Practice Problems and Quality Solution

Practice: 1.8 # 2, 52, 57, 58

Quality Solution: 1.8 # 30

1



Math 114, L’Hopital’s Rule (Section 4.7)

Main Points:

1. Using l’Hopital’s rule to evaluate limits of quotients

2. Using limits of quotients to describe dominance

3. Variations on l’Hopital’s Rule

Overview

This section gives us a way to evaluate limits of the form 0
0 or 1

1 . The trick is to use l’Hopital’s rule,
which says that you can take the derivative of the top and the derivative of the bottom and then take the
limit of that. Intuitively, if both the numerator and the denominator are shrinking (or growing), we use
derivatives to tell us which one is shrinking (or growing) at a faster rate.

One application is determining the dominance of one function over another. For example, we can use
l’Hopital’s rule to prove that although lnx and x

p (for p > 0) both grow without bound as x increases, the
power function will always surpass the logarithmic function, eventually. We do this by looking at their
quotient and taking a limit as x approaches infinity.

lim
x!1

lnx

x

p

H
= lim

x!1

1
x

p · xp�1
= lim

x!1

1

p · xp

= 0

Note that the limit is of the form 1
1 , so it is valid to apply l’Hospital’s rule. The lnx in the numerator is

trying to make the limit go to infinity, but the x

p in the denominator is trying to make the limit go to zero;
it is a competition, and l’Hopital’s rule tells us who wins: since the final limit is zero the power function in
the denominator wins. This means the power function dominates the logarithmic function. This is
somewhat surprizing since for small p-values the power function does not appear to grow very quickly.
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It is sometimes possible to use l’Hopital’s Rule to evaluate limits of the form 0 ·1, 1�1, 00, 10, or 11,
but it is necessary to rewrite the function as a quotient so that the limit is of the form 0

0 or 1
1 before

applying l’Hopital’s rule. See Examples 6, 7, and 8.

Assignments

1. Reading Assignment

Read Section 4.7. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

4.7 # 1, 5, 6, 14, 34, 45

3. Practice Problems and Quality Solution

Practice: 4.7 # 4, 7, 15, 46, 47
Quality Solution: 4.7 # 44

1



Math 114, Improper Integrals (Section 7.6)

Main Points:

1. Two kinds of improper integrals

2. Using limits to describe improper integrals

Overview

Our original discussion of the definite integral does not allow for integrating over an infinite interval or
integrating functions that are unbounded at a point, but such integrals, called improper integrals do
arise in applications. We use limits to describe such integrals: some of which have a finite value, some of
which do not. An improper integral with a finite value is called convergent, whereas an improper integral
without a finite value is called divergent.

Assignments

1. Reading Assignment

Read Section 7.6. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

7.6 # 3, 5, 7, 23, 24, 43

3. Practice Problems and Quality Solution

Practice: 7.6 # 4, 6, 9, 13, 19, 20
Quality Solution: 7.6 # 36

1



Math 114, Parametric Equations (Section 4.8-I)

Main Points:

1. Representing motion in the plane with parametric equations

2. Finding speed and velocity

Overview

Recall that motion along a straight line can be described by a position function s(t), and its derivative is

the velocity function v(t) =

ds

dt

. Velocity can be positive or negative; the sign indicates the direction of

motion. Speed, on the other hand, is always positive, and it is given by the magnitude (absolute value) of

the velocity.

Motion in the plane can be described by a pair of functions: x(t) and y(t), representing the x-coordinate

and y-coordinate of the position at time t, respectively. The equations for x and y in terms of t are called

parametric equations because they express x and y in terms of a common parameter, namely t.

The velocity of an object moving in the plane is also represented by a pair of functions: the velocity in the

x-direction is v

x

(t) =

dx

dt

and the velocity in the y-direction is v

y

(t) =

dy

dt

. The velocity vector is a way of

expressing both of these velocities simultaneously. Speed simply describes how fast an object moves along

the direction of its motion; it is the magnitude (length) of the velocity vector.

Assignments

1. Reading Assignment

Read the first part of Section 4.8, up to and including Example 8 on page 253. Take notes in

your notebook, and answer the reading questions.

2. Discussion Problems

4.8 # 1, 7, 9, 21, 22, 31, 46

3. Practice Problems and Quality Solution

Practice: 4.8 # 3, 5, 23, 30, 39, 49

Quality Solution: 4.8 # 26

1



Math 114, Parametric Curves (Section 4.8-II)

Main Points:

1. Representing a curve with parametric equations

2. Eliminating the parameter to find a Cartesian equation for a curve given by parametric equations

3. Tangent lines, slope and concavity of parametric curves

4. Area under parametric curve

Overview

Recall that the motion of a particle in the xy-plane can be described using parametric equations, which
describe the x-coordinate and the y-coordinate of the particle at a given time t. The path in the xy-plane
traced out by the particle over time is an example of a parametric curve, a curve whose coordinates are
given by equations expressed in terms of a common variable called the parameter. The parameter is
usually denoted t, suggesting time, but it is legitimate to use any variable for the parameter, and, in
applications, the parameter does not necessarily represent time. Sometimes it is possible to eliminate the

parameter to obtain an equation for the curve involving only x and y, as in Example 1, when the
parametric curve given by x = cos t, y = sin t was rewritten as x2 + y

2 = 1.

For a curve in the xy-plane, the slope of a tangent line (assuming there is a well-defined tangent line!)
to the curve at the point (a, b) is dy

dx

|(a,b). We use the Chain Rule to find dy

dx

for a curve in parametric form.

dy

dt

=
dy

dx

· dx
dt

) dy

dx

=
y

0(t)

x

0(t)
(if x0(t) 6= 0)

Note that this will give us a formula for dy

dx

in terms of t. Let m(t) be dy

dx

as a function of t. Then, to

determine concavity, we need d

2
y

dx

2 , which is the derivative of m with respect to x:

d

2
y

dx

2
=

dm

dx

=
m

0(t)

x

0(t)
(if x0(t) 6= 0)

Since dx = x

0(t)dt, the signed area between a parametric curve and the x-axis from x(↵) to x(�) is:

Z
x(�)

x(↵)
y dx =

Z
�

↵

y(t)x0(t) dt

as long as the curve is traversed exactly once, from left to right, as t increases from ↵ to �.

Assignments

1. Reading Assignment

Read the second part of Section 4.8, as well as the hand-out on finding area under a

parametric curve. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

4.8 # 27, 45, 47, 52, and one additional problem (see below)

3. Practice Problems and Quality Solution

Practice: 4.8 # 29, 51, 54, and one additional problem (see below)
Quality Solution: 4.8 # 28

1



Math 114, Parametric Curves (Section 4.8-II)

Additional Discussion Problem.

Sketch the curve x = 3 cos ✓, y = 4 sin ✓, 0  ✓  2⇡, and find the area that it encloses. (Hint: Use
symmetry. Divide the area into four equal pieces and find the area of one piece, then multiply by four to
get the total area.)

Additional Practice Problem.

Sketch the curve x = 9 + e

t , y = t� t

2, and find the area enclosed by the curve and the x-axis.

2



Math 114, Parametric Curves (Section 4.8-II)

Areas Enclosed by Parametric Curves

Suppose we have a parametric curve lying above the x-axis and the curve is traversed exactly once, from
left to right, as the parameter moves from t = ↵ to t = �. The vertical distance from the curve to the
x-axis is given by y(t) and di↵erential is dx = x

0(t)dt. Thus the area between the curve and the x-axis,
from x(↵) to x(�) is:

A =

Z
x(�)

x(↵)
y dx =

Z
�

↵

y(t)x0(t) dt

Example 1. Find the area between the parametric curve x = t� 1, y = t

2 + t and the x-axis from x = 0
to x = 1.

Notice that as t increases, x = t� 1 also increases, so as “time” moves forward, the curve is
traversed from left to right. The parameter values corresponding to x = 0 and x = 1 are t = 1
and t = 2, respectively. Notice that y is positive when 1  t  2. Thus the area between the
curve and the x-axis from x = 0 to x = 1 is:

A =

Z 2

1
y(t)x0(t) dt =

Z 2

1
(t2 + t)(1)dt =

Z 2

1
t

2 + t dt = ( 13 t
3 + 1

2 t
2)
��3
1

= 23
6

To check our work, we can eliminate the parameter and integrate with respect to x. Since
x = t� 1, t = x+ 1, and y = (x+ 1)2 + (x+ 1) = x

2 + 3x+ 2. Thus the area is

A =

Z 1

0
x

2 + 3x+ 2 dx = ( 13x
3 + 3

2x
2 + 2x)

��1
0

= 23
6

Example 2. Find the area enclosed by the parametric curve x = e

t, y = 1� t

2 and the x-axis.

Notice that as t increases, x = e

t also increases, so as “time” moves forward, the curve is
traversed from left to right. Also notice that the x-intercepts of the curve will occur when
y = 0, namely when t = �1 and t = 1, and when t is between �1 and 1, y is positive. Thus the
area enclosed by the curve and the x-axis is given by the integral

A =

Z 1

�1
y(t)x0(t) dt =

Z 1

�1
(1� t

2)et dt

We can evaluate this integral using IBP. Let u = 1� t

2 and dv = e

t

dt. Then du = �2tdt and
v = e

t. Thus:
Z
(1� t

2)et dt = (1� t

2)et �
Z

(et)(�2t) dt = (1� t

2)et + 2

Z
te

t

dt

We need to use IBP again: with u = t, dv = e

t

dt, we get du = dt and v = e

t, so
Z

te

t

dt = te

t �
Z

e

t

dt = te

t � e

t + C = (t� 1)et + C

Substituting back into the original integral, we get
Z

(1�t

2)et dt = (1�t

2)et + 2

Z
te

t

dt = (1�t

2)et + 2(t�1)et+C = �(1�2t+t

2)et+C

So we can conclude

A =

Z 1

�1
(1� t

2)et dt = �(1� 2t+ t

2)et
��1
�1

= 0 + 4e�1 = 4/e

3



Math 114, Area Between Two Curves; Average Value (Section 5.4)

Main Points:

1. Area between two curves

2. Average value of a continuous function on an interval

Overview

Area Recall that we use a definite integral to find the (signed) area between a curve and the x-axis. If

f(x) � 0 on an interval [a, b], then the definite integral gives a literal area:

(area between f(x) and x-axis from x = a to x = b) =

Z b

a
f(x) dx

Similarly, if a function f(x) � g(x) on an interval [a, b], the area between the two curves from x = a

to x = b is obtained by subtracting the smaller area from the greater area:

(area between f(x) and g(x) from x = a to x = b) =

Z b

a
f(x) dx �

Z b

a
g(x) dx =

Z b

a

�
f(x)�g(x)

�
dx

When two continuous curves cross each other more than once, we can find the area of the region (or

regions) between the two curves using this idea, once we have determined (a) the intersection points of the

two curves and (b) which curve lies above the other in each region.

Average Value Another application of the integral is finding the average value of a quantity that

changes in a continuous way. For example, to estimate the average temperature in a given city over the

course of a year, we might take the average of the temperatures recorded at noon on the first day of each

month: add up these temperatures and divide by twelve. We could improve our estimate by using weekly,

daily, even hourly temperature recordings. The sums that are used to compute these averages are Riemann

sums; taking a limit as the number of recordings goes to infinity gives a definite integral. See the discussion

on page 304 for the details of the derivation of the average value formula:

(average value of f(x) on [a, b]) =

1

b� a

Z b

a
f(x) dx

Assignments

1. Reading Assignment

Read “Area Between Curves” and “The Definite Integral as an Average” in Section 5.4, pages

301-302 and pages 304-305. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

5.4 # 7, 13, 18, 35*

*Use this fact: Since a

t
= e

ln(at)
= e

(ln a)t
, P = 112(1.011)

t
= 112e

(ln(1.011))t
.

3. Practice Problems and Quality Solution

Practice: 5.4 # 8, 15, 20*, 25

Quality Solution: 5.4 # 34

*Do not try to find the intersection point exactly; estimate it by zooming in on the graphs.

1



Math 114, Areas and Volumes (Section 8.1)

Main Points:

1. Approximating areas and volumes with Riemann sums of “slices”

2. Calculating area and volume exactly using definite integrals

Overview

Recall that the definite integral can be used to find the area under a curve. The area is first approximated

by a Riemann sum, which is the sum of the areas of rectangles, whose heights are given by the y-values of

the curve and whose widths are �x, small changes in x. Taking a limit as the number of rectangles goes to

infinity gives the exact area.

We generalize this procedure to find areas of various regions in the plane: we slice the region into thin

strips, approximate each strip by a rectangle, add up the areas of the rectangles, and take a limit as the

number of rectangles goes to infintity. If we can represent this sum as a Riemann sum, then the limit is a

definite integral, and we can try to find the area using an antiderivative.

In particular, to find the area of a region enclosed by two curves in the plane, we usually slice the

region vertically (in which case the thickness of the strips is �x) or horizontally (in which case the

thickness of each strip is �y). When slicing vertically, the heights of the approximating rectangles will be

given by the vertical distance between the two curves, which can be computed by subtracting the height of

the bottom curve from the height of the top curve: h(x) = Top(x)� Bottom(x). When slicing horizontally,

the widths of the approximating rectangles wil be given by the horizontal distance betwen the two curves,

which can be computed by subtracting the left curve from the right curve: w(y) = Right(y)� Left(y).

To find the volume of a solid, we slice the solid into thin slices, whose crossectional area is known from

geometry (for example, the area of a circle, rectangle, or triangle.) We then approximate the volume of

each slice by multiplying the crossectional area by the thickness, add up these volumes, and take a limit as

the number of slices goes to infinity. Again, if we can represent the sum as a Riemann sum, then the limit

is a definite integral and we can try to find the volume using an antiderivative.

Assignments

1. Reading Assignment

Read Section 8.1. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

8.1 # 7, 11, 12, 13, 24, 36

3. Practice Problems and Quality Solution

Practice: 8.1 # 2, 4, 18, 25, 27, 35

Quality Solution: 8.1 # 26

1



Math 114, Applications to Geometry: Volumes by Slicing (Section 8.2-I)

Main Points:

1. Finding volumes of revolution by slicing solid into disks or washers

2. Volumes of solids constructed by standing squares, semicircles, or triangles on edge in a planar region.

Overview

Recall our strategy for finding the volume of a solid: we slice the solid into thin slices, whose crossectional

area is known from geometry, approximate the volume of each slice, add up these volumes, and take a limit

as the number of slices goes to infinity. If we can represent the sum as a Riemann sum, then the limit is a

definite integral and we can try to find the volume using an antiderivative.

We now focus our attention on finding volumes of solids constructed from planar regions in a couple

specific ways.

Solids of revolution are constructed by rotating a planar region about some axis. When we slice a solid

of revolution perpendicularly to the axis of rotation, each slice can be approximated by a circular disk or

washer (a circular disk with a hole in the center), whose volume is easy to compute. See Examples 1-3.

Given a planar region, we may also construct a solid by standing squares, semicircles, or triangles on
edge in this region. See Example 4.

Assignments

1. Reading Assignment

Read Section 8.2, pages 422-425, up to but not including the part about arc length. Take notes

in your notebook, and answer the reading questions.

2. Discussion Problems

8.2 # 7, 13, 40-44

3. Practice Problems and Quality Solution

Practice: 8.2 # 8, 11, 46-50, 55

Quality Solution: 8.2 # 14

1



Math 114, Applications to Geometry: Arc Length (Section 8.2-II)

Main Points:

1. Arc length formulas

2. Using Mathematica for numerical integration

Overview

We can use a definite integral to express the length of a curve: we divide the curve into short segments,
approximate the length of each segment by assuming the segment is straight, add up these approximate
lengths to obtain a Riemann sum, and then take a limit as the number of segments approaches infinity.

As usual, if it is possible to find an antiderivative for the integrand, we can use the Fundamental Theorem
of Calculus to evaluate the integral and find the arc length of the curve exactly. However, it turns out that,
in arc length problems, frequently the integrand does not have an elementary antiderivative; numerical
methods are needed to approximate the integral. We can use Mathematica to plot the curves and to
estimate their arc lengths numerically.

The curve y = x

3 from x = 0 to x = 5 in Example 5 can be plotted with the Mathematica Plot command:

Plot[x^3, {x, 0, 5}]

The integral for the arc length is
R 5
0

p
1 + (3x2)2 dx. It can be estimated numerically in Mathematica:

NIntegrate[Sqrt[1+(3x^2)^2], {x, 0, 5}]

The parametric curve x = 2 cos t, y = sin t, 0  t  2⇡ in Example 6 can be plotted with ParametricPlot:

ParametricPlot[{2*Cos[t], Sin[t]}, {t, 0, 2*Pi}]

The integral for its arc length is
R 2⇡
0

p
4 sin2 t+ cos2 t dt and can be estimated numerically by:

NIntegrate[Sqrt[4(Sin[t])^2 + (Cos[t])^2], {t, 0, 2*Pi}]

Assignments

1. Reading Assignment

Read Section 8.2, pages 425-427. Take notes in your notebook, and answer the reading
questions.

2. Discussion Problems

8.2 # 15*, 17*, 19, 21, 23*, 67**
*Use Mathematica to plot the curve and to estimate the arc length using numerical integration.
The natural log is Log.

**Hints: Show and use the fact that

q
1 +

�
1
2 (e

x � e

�x)
�2

= 1
2 (e

x + e

�x). Also, at the end of

the problem, you need to solve e

b � e

�b = 10 for b. Use a graph to estimate b instead of trying
to find b exactly.

3. Practice Problems and Quality Solution

Practice: 8.2 # 16*,18, 22, 52
Quality Solution: 8.2 # 24*
*Use Mathematica to plot the curve and estimate the arc length using numerical integration.
Absolute value is Abs.

1



Math 114, Sequences (Section 9.1)

Main Points:

1. Mathematical meaning of sequence

2. Recursive sequences

3. Convergence of sequences

4. Monotone bounded sequences

Overview

A sequence is an infinite list of numbers in a definite order. The numbers in the sequence are called
terms. One way of describing a sequence is by listing the first several terms, as in these examples:

1, 2, 3, 4, 5, 6, . . . 1,�1, 1,�1, 1,�1, . . . 1, 1/2, 1/4, 1/8, . . .

Another way of describing a sequence is by giving a formula for the nth term of the sequence. For example
the three sequences above could be represented with the following three formulas:

an = n , n � 1 bn = (�1)n , n � 0 cn = 1/2n , n � 0

Some sequences are more easily described recursively. In a recursively defined sequence, the first term (or
the first few terms) are given along with a formula for how to find successive terms. For example, the first
sequence above could be defined recursively as: a1 = 1, an = an�1 + 1 for n > 1.

If the numbers an approach a specific, finite number L as n ! 1, then the sequence is said to converge,
and L is called the limit of the sequence. If a sequence does not have a limit, it is said to diverge.

Assignments

1. Reading Assignment

Read Section 9.1. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

9.1B # 13, 14, 17, 18, 21, 24, 63, 64

3. Practice Problems and Quality Solution

Practice 9.1A: # 4, 8, 11, 28, 29, 31, 42, 43, 45, 55
Quality Solution 9.1A: # 56

Practice 9.1B:# 16, 19, 20, 23, 65, 66
Quality Solution 9.1B: # 22

1



Math 114, Geometric Series (Section 9.2)

Main Points:

1. Mathematical meaning of series

2. Finite and infinite geometric series

Overview

Adding the terms in a sequence results in a series. Of course, one ought to be suspicious of whether adding
infinitely many numbers can actually result in a finite number. Sometimes it does; sometimes it doesn’t. A
convergent series is one that does have a finite sum; a divergent series does not have a finite sum. We
will use limits to make the notion of convergence precise, as we did in our discussion of improper integrals.

We may try to approximate the sum (if it exists) of an infinite series a0 + a1 + a2 + . . . by adding up a
large (but finite) number of terms. Adding up the first n terms results in the nth partial sum:
Sn = a0 + a1 + a2 + · · ·+ an�1. In hopes of obtaining better and better approximations, we add more and
more terms (i.e. we let n approach infinity). However, the partial sums may grow unboundedly (or exhibit
other wild behavior); in such cases the series diverges. If, in contrast, the partial sums approach a specific
finite number, as we add more and more terms, the series converges and the sum S of the series is defined
to be the limit of the partial sums: S = lim

n!1
Sn.

One of the simplest kinds of series is a geometric series, one in which the ratio of successive terms is a
constant, called the common ratio. For example, 3 + 6 + 12 + 24 + 48 + . . . is a geometric series with
common ratio 2, and 3 + 3/2 + 3/4 + 3/8 + 3/16 + . . . is geometric with common ratio 1/2. It is clear that
the first geometric series diverges; that the second series converges is perhaps not quite as obvious, but still
relatively straightforward. Imagine that there are six cupcakes left after your birthday party, so you eat
three yourself, then give half of what’s left to your friend (3/2 cupcakes). Your friend eats half of what you
gave her and gives the rest (3/4 a cupcake) to you, who again eat half and give the rest to her (3/8 a
cupcake). If you continue in this way indefinitely, how much will the two of you eat? Well, certainly not an
infinite amount, because you only started with six cupcakes!

It turns out that a geometric series diverges when the absolute value of the common ratio is greater than or
equal to one (again, this is fairly obvious) and converges when the absolute value of the common ratio is
less than one. This can be proven rigorously, by looking at the limit of partial sums.

Assignments

1. Reading Assignment

Read Section 9.2. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

9.2 # 1, 2, 8, 9, 19, 23, 25, 33, 35

3. Practice Problems and Quality Solution

Practice 9.2: # 3, 4, 6, 10, 11, 21, 34, 40
Quality Solution 9.2: # 24

1



Math 114, Convergence of Series (Section 9.3)

Main Points:

1. Convergence properties of series

2. Comparison with improper integrals

3. The harmonic series and p-series

Overview

In the previous section, we looked at a special family of infinite series: infinite geometric series; we used the
formula for the sum of a finite geometric series to find the sum of a convergent infinite geometric series,
using the limit of partial sums. We now expand our view to look at convergence and divergence of series
more generally.

Recall that an infinite series a0 + a1 + a2 + . . . is convergent if the limit of partial sums is finite. In this
case the sum of the series S is the limit of partial sums: S = lim

n!1
Sn, where Sn = a0 + a1 + · · ·+ an�1. A

series is divergent if it does not converge.

Theorem 9.2 lists several straightforward convergence properties of series. Make sure to include the full
statement of this theorem in your notes.

We next use what we know about improper integrals to discuss the convergence and divergence of infinite
series. The Riemann sum of an improper integral is an infinite series; the convergence or divergence of the
integral can help us determine the convergence or divergence of the series. This idea is made precise in the

integral test. The integral test allows us to determine convergence/divergence in an important family of
examples: the p-series, which includes as a special case the harmonic series.

Assignments

1. Reading Assignment

Read Section 9.3. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

9.3 # 1, 4, 23, 25, 33, 37
Hints: For 23, 25, and 33, use Theorem 9.2. For 33, also use the fact that ln(2n) = ln(2) · n.

3. Practice Problems and Quality Solution

Practice 9.3: # 2, 5, 6, 24, 34, 35
Quality Solution 9.3: # 38, 8*

1



Math 114, The Ratio Test (Section 9.4)

Main Points:

1. Testing series for convergence

2. The Ratio Test

Overview

Recall that the sum of a convergent infinite series is the limit of its partial sums; if the limit of partial sums
does not exist, the series is divergent and does not have a finite sum. In many cases, finding a fomula for
the nth partial sum is impractical, but, fortunately, there are ways to determine whether or not a series
converges without having to compute the limit of partial sums explicitly. An example we have discussed is
the Integral Test; several other tests are discussed in Section 9.4. We will focus on the Ratio Test.

Recall that a geometric series converges if the ratio of successive terms (which is a constant, called the
common ratio) has absolute value less than one. For a series

P
an that is not geometric, the ratio an+1/an

of successive terms will not be a constant, but if the absolute value of the ratio approaches a constant less
than one as n increases, the series converges. This is the idea behind the Ratio Test.

Assignments

1. Reading Assignment

Read the part of Section 9.4 about the Ratio Test, pages 515-516. Take notes in your notebook,
and answer the reading questions.

2. Discussion Problems

9.4 # 15, 19, 20, 51, 60

3. Practice Problems and Quality Solution

Practice 9.4: # 14, 17, 18, 52, 61
Quality Solution 9.4: # 16

1



Math 114, Power Series and Radius of Convergence (Section 9.5)

Main Points:

1. Power series as “polynomials with infinitely many terms”

2. Domain of power series, radius of convergence

3. Using geometric series to find rational function for power series

Overview

Not all functions that turn out to be interesting or useful for applications can be described in terms of
familiar functions. For example, the function e

�x

2

is used in probability, but its antiderivative is not
elementary: it cannot be expressed in terms of familiar functions. It is called the “error function,”
sometimes denoted erf. Another example is the “Bessel functions,” which are used to model
electromagnetic waves, heat conduction, and vibrating membranes.

One way to represent such functions is as power series, which can be thought of as polynomials with
infinitely many terms. (Of course, there is the question of convergence.) In general, a power series about
x = a is of the form:

C0 + C1(x� a) + C2(x� a)2 + C3(x� a)3 + . . .

The domain of a power series consists of all real numbers x for which the series converges. In general, the
domain of a power series will be an interval centered around x = a. The distance from zero to either
endpoint is called the radius of convergence. The endpoints of the interval may or may not be included.
We typically use the Ratio Test to determine the radius of convergence. Usually, further work is needed to
determine convergence at the endpoints.

Two extreme cases are worth discussing separately: (1) if the power series converges only at x = a, the
domain is simply {a} and the radius of convergence is R = 0 and (2) if the power series converges for all x,
the domain is (�1,1) and we say that the radius of convergence is R = 1.

The geometric series
1P

n=0
x

n converges when |x| < 1 and diverges otherwise. Viewed as a power series, it is

a function with domain (�1, 1). We can find a rational function that agrees with the power series on its
domain using the formula for the sum of a geometric series:

1

1� x

=

1X

n=0

x

n = 1 + x + x

2 + x

3 + . . .

We can use this fact to find power series representations of some functions that are similar to this one. For
example, with first term 3 and common ratio 4x,

3

1� (4x)
=

1X

n=0

3 · (4x)n =

1X

n=0

(3 · 4n)xn = 3 + 12x + 48x3 + . . .

This converges when |4x| < 1, or |x| < 1
4 . Thus the domain of the power series is (� 1

4 ,
1
4 ).

Assignments

1. Reading Assignment

Read Section 9.5. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

9.5 # 5, 7, 11, 17, 18, 19, 35, 46

3. Practice Problems and Quality Solution

Practice 9.5: # 12, 13, 24, 36, 45
Quality Solution 9.5: # 16
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Math 114, Taylor Series Revisited (Sections 10.2, 10.3A)

Main Points:

1. Recall the notion of a Taylor series

2. Binomial series expansion

3. Finding new Taylor series by substitution

Overview

Recall our study of Taylor polynomials at the beginning of the semester. The first three Taylor

polynomials for a function f(x) centered at a given point x = a are simply the constant approximation:

T0(x) = f(a), the linear approximation T1(x) = f(a) + f

0
(a)(x� a), and the quadratic approximation

T2(x) = f(a) + f

0
(a)(x� a) +

1
2f

00
(a)(x� a)

2
. In general the Taylor coe�cient C

n

for the (x� a)

n

term in

the Taylor polynomial is C

n

= f

(n)
(a)/n!, where f

(n)
refers to the nth derivative of f , so

T

n

(x) = f(a) + f

0
(a)(x� a) +

f

00
(a)

2!

(x� a)

2
+

f

000
(a)

3!

(x� a)

3
+ . . . +

f

(n)
(a)

n!

(x� a)

n

Each successive Taylor polynomial gives a better approximation for f(x) near x = a. We can describe the

family of all Taylor polynomials for a given function centered at a given point using Taylor series.

Now that we have studied infinite series and power series in particular, we are in a position to discuss

Taylor series in more depth and with more rigor. In particular, now that we have a precise understanding

of convergence, we can find the radius of convergence of a Taylor series analytically (using the Ratio Test).

We take this as an opportunity to review the Taylor series for e

x

, sinx, and cosx and to discuss an

important family of examples from Section 10.2 that we did not discuss at the beginning of the semester:

the family of binomial series expansions, namely Taylor series for functions of the form f(x) = (1 + x)

p

,

for some real number p. In the first part of Section 10.3, we discuss how to find new Taylor series by

substitution.

Assignments

1. Reading Assignment

Read Section 10.2 and the beginning up Section 10.3, up through Example 1 on page 553. Take

notes in your notebook, and answer the reading questions.

2. Discussion Problems

10.2 # 1, 4, 27(b)*, 47; 10.3 # 1, 4, 48

*Before doing #27(b), look back at your answers for #5 and #27(a) from the beginning of the

semester.

3. Practice Problems and Quality Solution

Practice 10.2 # 7, 28, 29; 10.3 # 7, 13

Quality Solution 10.3: # 2

1



Math 114, Using Taylor Series (Section 10.3B)

Main Points:

1. Integrating and di↵erentiating Taylor series

2. Multiplying and substituting Taylor series

3. Applications of Taylor series

Overview

Taylor series give us a way to replace hard-to-work-with functions with simpler ones, namely polynomials.

For example, the error function in probability is erf(x) =

2p
⇡

R
x

0 e

�t

2

dt. By the Fundamental Theorem of

Calculus, erf(x) is an antiderivative for e

�x

2

. Since we know the Taylor series about t = 0 for e

t

, we can

find the Taylor series for e

�t

2

by substitution, then if we simply treat this series like a polynomial with

infinitely many terms, we can easily integrate it to find a Taylor series about x = 0 for erf(x). This means

we have replaced the mysterious erf function with a family of simple approximating functions, polynomials!

Treating Taylor series as polynomials with infinitely many terms, we can di↵erentiate them, integrate

them, and multiply them to obtain new Taylor series. We can then use these Taylor series to answer

questions about hard-to-work-with functions, using the approximating polynomials.

Assignments

1. Reading Assignment

Read Section 10.3. Take notes in your notebook, and answer the reading questions.

2. Discussion Problems

10.3 # 6, 21, 24, 26, 33, 40

3. Practice Problems and Quality Solution

Practice 10.3: # 8, 25, 34, 41

Quality Solution 10.3: # 32

1


