
Math 132, Prep 11.9B, 11.10 (Taylor Series and Applications to Integration)

Name: Section:

Names of collaborators:

Main Points:

1. Recall the notion of a Taylor series

2. New Taylor series from old

3. Using power series to evaluate indefinite integrals or estimate definite integrals

1. Taylor Series

Recall our study of Taylor polynomials at the beginning of the semester. The first three Taylor
polynomials for a function f(x) centered at a given point x = a are simply the constant approximation:
T0(x) = f(a), the linear approximation T1(x) = f(a) + f ′(a)(x− a), and the quadratic approximation
T2(x) = f(a) + f ′(a)(x− a) + 1

2f
′′(a)(x− a)2. In general the Taylor coefficient cn for the (x− a)n term in

the Taylor polynomial is cn = f (n)(a)/n!, where f (n) refers to the nth derivative of f , so

Tn(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + . . . +

f (n)(a)

n!
(x− a)n

Each successive Taylor polynomial gives a better approximation for f(x) near x = a. We can describe the
family of all Taylor polynomials for a given function centered at a given point using Taylor series.

Note that a Taylor series centered at x = 0 is called a Maclaurin series.

Now that we have studied infinite series and power series in particular, we are in a position to discuss
Taylor series in more depth and with more rigor. Theorem 8 tells us the condition that ensures the Taylor
series of a function is a valid representation of the function (essentially, when the remainder goes to zero.)
Now that we have a precise understanding of convergence, we can find the radius of convergence of a
Taylor series analytically (using the Ratio Test).

We take this as an opportunity to review the Taylor series for ex, sinx, and cosx and to discuss how to
find new Taylor series from ones we already know.

Exercises.

1. See Table 1, in Section 11.10. What are the Maclaurin series for ex, sin(x), and cos(x)?
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2. (a) Find the first four Taylor polynomials of g(x) = 1
x centered at x = −3.

(b) Find the Taylor series of g(x) centered at x = −3. What is the radius of convergence?

3. We can use known Taylor series to find Taylor series for related functions. (See Example 10.)

(a) Use the Taylor series for ln(1 + x) to find a Taylor series for x ln(1 + x).
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(b) Use the Taylor series for ex to find a Taylor series for
ex − 1

x
.

Hint. Since ex =

∞∑
n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ . . . , subtracting 1 gives: ex − 1 =

∞∑
n=1

xn

n!
.

(c) Use the Taylor series for cos(x) to find a Taylor series for cos(x2).

Hint. Substitute u = x2 in for x in the Taylor series for cosx.

(d) Use the Taylor series for ex to find a Taylor series for e−x/2.
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2. Applications to Integration

Recall that not every elementary function has an elementary antiderivative. For example, the
antiderivative of cos(x2) is a certain Fresnel function, and it cannot be expressed in terms of elementary
functions. However, now that we know how to find a power series representation for cos(x2) and we know
how to integrate power series, we have a way to find a power series representation for the antiderivative of
cos(x2), and we can use it to estimate definite integrals of cos(x2).

cos(x) =

∞∑
n=0

(−1)n x2n

(2n)!
= 1 − x2

2!
+

x4

4!
− x6

6!
+ . . .

cos(x2) =

∞∑
n=0

(−1)n x4n

(2n)!
= 1 − x4

2!
+

x8

4!
− x12

6!
+ . . .

∫
cos(x2) dx =

∫ ∞∑
n=0

(−1)n x4n

(2n)!
dx =

∫ (
1 − x4

2!
+

x8

4!
− x12

6!
+ . . .

)
dx

= C +

∞∑
n=0

(−1)n x4n+1

(2n)!(4n + 1)
= C + x− x5

2! · 5
+

x9

4! · 9
− x13

6! · 13
+ . . .

Thus, for example, ∫ 0.6

0

cos(x2) dx =

∞∑
n=0

(−1)n (0.6)4n+1

(2n)!(4n + 1)

and we can use a partial sum to estimate the integral. Since this is an alternating series, we can use the
Alternating Series Estimation Theorem to determine the accuracy of our estimate. In particular,

s2 =

2∑
n=0

(−1)n (0.6)4n+1

(2n)!(4n + 1)
= (0.6) − (0.6)5

2! · 5
+

(0.6)9

4! · 9
= 0.5922710656 . . .

estimates the value of the integral, accurate to six decimal places, since b3 = 1.39537 × 10−7 will not
change the sixth decimal place. Therefore∫ 0.6

0

cos(x2) dx ≈ 0.592271

Exercises.

4. Evaluate the indefinite integrals as power series. (See 11.9, Example 7a, and 11.10, Example 13a.)

(a)

∫
t

1 + t3
dt
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(b)

∫
x2 ln(1 + x) dx

(c)

∫
et − 1

t
dt

(d)

∫
x cos(x3) dx
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5. Estimate the definite integrals, accurate to the stated number of decimal places. (See 11.9, Example
7b, and 11.10, Example 13b.)

(a)

∫ 0.2

0

1

1 + x5
dx (6 decimal places)

(b)

∫ 1

0

sin(x4) dx (4 decimal places)
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