 Reading Questions Reread Example 1 in Section 12.2, and try this similar problem: describe in words the graphs of the function \(\ell(x,y) = x^2 + y^2 - 6. \) Reread Example 3 in Section 12.2, which describes the graph of \(g(x,y) = x^2 - y^2, \) and answer these questions about the example. (a) What are the cross-sections of the graph of \(g(x,y) \) with \(y \) fixed? (b) What are the cross-sections of the graph of \(g(x,y) \) with \(x \) fixed?
function $\ell(x,y)=x^2+y^2-6$. 2. Reread Example 3 in Section 12.2, which describes the graph of $g(x,y)=x^2-y^2$, and answer these questions about the example. (a) What are the cross-sections of the graph of $g(x,y)$ with y fixed?
questions about the example. (a) What are the cross-sections of the graph of $g(x, y)$ with y fixed?
questions about the example. (a) What are the cross-sections of the graph of $g(x, y)$ with y fixed?
questions about the example. (a) What are the cross-sections of the graph of $g(x, y)$ with y fixed?
questions about the example. (a) What are the cross-sections of the graph of $g(x, y)$ with y fixed?
(b) What are the cross-sections of the graph of $g(x, y)$ with x fixed?
(b) What are the cross-sections of the graph of $g(x, y)$ with x fixed?
(b) What are the cross-sections of the graph of $g(x, y)$ with x fixed?
(c) What is the shape of the graph of $g(x, y)$?
3. Reread the part in Section 12.2 about linear functions of two variables. What is the shape of the graph of a linear function of two variables?

Section: _____

4.	Reread the part in Section 12.2 about cylinders. Describe the graph of $z=y^2$ in 3-space.
5.	Reread Examples 3, 5, and 6 in Section 12.3.
	(a) Describe, in words, the contour diagram of a parabolic bowl.
	(b) Describe, in words, the contour diagram of a plane.
	(c) Sketch a contour diagram for a saddle-shaped surface. Include level curves for at least five
	z-values.
6.	What struck you in reading this section? What is still unclear to you? What questions do you have?

Name:	Section:
Read Section 12.4. Take notes in your notebook, making a formulas in blue boxes. Then answer the following question	
Reading Questions	
1. Reread the part about linear functions from a nume the end of the section (page 697). Make sure to exp	-
 Reread the part about contour diagrams of linear fu the section (page 697). Make sure to explain your re 	· ·
-	· · · · · · · · · · · · · · · · · · ·

Name:	Section:
Read Sections 12.5 and 12.6. Take notes in your italics and formulas in blue boxes. Then answer	notebook, making sure to include words and phrases in the following questions.
Reading Questions	
1. Describe, in your own words, what a level	surface of a function of three variables is.
2. Consider the function $f(x, y, z) = x^2 + y^2$ might be useful.)	$-z^2$. (For this problem, the catalog of surfaces on page 702
(a) What does the level surface correspondance the equation $x^2 + y^2 - z^2 = 1$.)	ading to $f(x, y, z) = 1$ look like? (Hint: the surface will
(b) What does the level surface correspond	ading to $f(x, y, z) = 0$ look like?
(b) What does the level surface correspon	Iding to $f(x,y,z) = 0$ look like:
(c) What does the level surface correspond	nding to $f(x, y, z) = -1$ look like?

3.	In your own words, explain why the notions of limit and continuity are more subtle in the
	multivariable case than the single-variable case. (See the very end of Section 12.6.)
4.	What struck you in reading this section? What is still unclear to you? What questions do you have

Name: _	Section:	
Read Sections 13.1 and 13.2. Take notes in your notebook, making sure to include words and phrases in italics and formulas in blue boxes. Then answer the following questions.		
Reading	Questions	
1. (a)	Briefly describe how a vector is different from a number by explaining the concepts of magnitude and direction.	
(b)	Now try Exercises 1-5 at the end of Section 13.2 (page 732.)	
2. Try	Exercise 1 at the end of Section 13.1 (page 724).	

Reread Example 4 in Section 13.1. Now suppose w is a vector of length 4, making an angle of π/3 with the positive x-axis. Resolve w into components using sine and cosine.
 What struck you in reading this section? What is still unclear to you? What questions do you have?

Name:	Castians
Name:	Section:

Read Section 13.3. Take notes in your notebook, making sure to include words and phrases in italics and formulas in blue boxes. Then answer the following questions.

Reading Questions

1. Try Exercises 1, 3, 5, and at the end of Section 13.3 (page 740.)

- 2. Suppose \vec{v} and \vec{w} are vectors of length 3 and 4 respectively. What can we conclude about \vec{v} and \vec{w} if (a) $\vec{v} \cdot \vec{w} = 0$?
 - (b) $\vec{v} \cdot \vec{w} = 12?$
 - (c) $\vec{v} \cdot \vec{w} = -12$?

- (a) What percentage of the force of the wind is in the direction of the sailboat's motion?
- (b) What are $\|\vec{F}_{perp}\|$ and $\|\vec{F}_{parallel}\|$ in the scenario of Example 9? (You will have to do some computations to find these; they are not stated explicitly in the text.) Which one of these is relevant for computing the work done on the sailboat?

Name:	Section:
Read Section 13.4. Take notes in your notebook, making sure to incluformulas in blue boxes. Then answer the following questions.	nde words and phrases in italics and
Reading Questions	
1. Try Exercises 1, 3, and 5 at the end of Section 13.4 (page 749.)	
2. If \vec{v} and \vec{w} both lie in the xy -plane, what can we say about the	direction of $\vec{v} \times \vec{w}$?

3. Reread Example 4. Redo the problem using the displacement vectors \overrightarrow{QP} and \overrightarrow{QR} . Do you get the same answer?

Name:	Section:
Read Sections 14.1 and 14.2. Take notes in your not italics and formulas in blue boxes. Then answer the	ebook, making sure to include words and phrases in following questions.
Reading Questions	
1. Reread Examples 1 and 2 in Section 14.1.	
(a) Explain, in your own words, what $T_x(2, 1)$ that it is positive indicates what about the) represents. (Make sure to include units.) The fact the temperature of the metal plate?
(b) Explain, in your own words, what $T_y(2, 1)$ that it is negative indicates what about t) represents. (Make sure to include units.) The fact he temperature of the metal plate?
2. Reread Example 4 in Section 14.1.	
(a) Explain, in your own words, what $H_x(10,$ that it is negative indicates what about t	20) represents. (Make sure to include units.) The fact he temperature in the room?
(b) Explain, in your own words, what $H_t(10,$ that it is positive indicates what about the	20) represents. (Make sure to include units.) The fact temperature in the room?

3. Compute the partial derivatives of $f(x,y) = 2x\sin(y)$ algebraically:

(a)
$$f_x(x,y) =$$

(b)
$$f_y(x, y) =$$

Name:	Section:
Read Section 14.3. Take notes in your notebook, making formulas in blue boxes. Then answer the following quest	
Reading Questions	
1. Reread Example 1, and try Exercise 1 at the end	of the section, page 777.
2. Reread Example 4, and try Exercise 9 at the end	of the section, page 777
2. Relead Example 4, and try Exercise 9 at the end of	or the section, page 111.

3.	Rere	ead Example 5.
		What does $f_T(T, P)$ represent? What does dT represent? What does $f_T(T, P) dT$ represent? (Make sure to include units.)
	(b)	What does $f_P(T, P)$ represent? What does dP represent? What does $f_P(T, P) dP$ represent?
	(5)	(Make sure to include units.)
	(c)	What does $d\rho$ represent? What are its units?

Name:	Section:
Read Section 14.4. Take notes in your formulas in blue boxes. Then answer	r notebook, making sure to include words and phrases in italics and the following questions.
Reading Questions	
	the third contour diagram, the one for the function $h(x, y)$. Notice in the directions of both \vec{v} and \vec{w} at the indicated point are negative
	or \vec{u} at the point indicated in the diagram such that the directional , what direction would \vec{u} be pointing? If not, why not?
	or \vec{u} at the point indicated in the diagram such that the directional hat direction would \vec{u} be pointing? If not, why not?
2. Reread Example 5, and try Exer	rcise 15 at the end of the section, page 785.

3. Reread Example 7, and use your answer to the previous question to find the directional derivative for $f(x,y) = x^2y + 7xy^3$ at the point (1,2) in the direction of the vector $\vec{i} - \vec{j}$.

Name:	Section:
Read Section 14.5. Take notes in your notebook, making sure to formulas in blue boxes. Then answer the following questions.	o include words and phrases in italics and
Reading Questions	
1. Try Exercises 13 and 19 at the end of the section, page 79	3.
2. Suppose f is a three-variable function, differentiable at the Complete each statement below by filling in the missing w	
(a) grad $f(a, b, c) \neq 0$ points in the direction of the	of f .
(b) grad $f(a, b, c) \neq 0$ is perpendicular to of f at $(a, b, c) \neq 0$	(a,b,c)
(c) The magnitude of $\operatorname{grad} f(a,b,c) \neq 0$ is of f at (a,b,c).
	٠٠, ٠,٠.

Name:	Section:
Read Section 14.6. Take notes in your notebook, formulas in blue boxes. Then answer the following	making sure to include words and phrases in italics and g questions.
Reading Questions	
1. Reread Examples 1, 2, and 3. Try Exercise	1 at the end of the section, page 803.

2. Reread Example 4, and try Exercise 7 at the end of the section, page 803.

3.	What application of the general chain rule to science is discussed in this section?
4.	What struck you in reading this section? What is still unclear to you? What questions do you have?

Name:	Section:
Read Section 14.7. Take notes in your notebo formulas in blue boxes. Then answer the follo	ook, making sure to include words and phrases in italics and owing questions.
Reading Questions	
1. Reread Example 1, and try Exercise 1 ϵ	at the end of the section, page 812.
	xample 4 from Section 14.2, page 767.) Explain, in your own present, in practical terms. Make sure to include units.
(a) $f_{xx}(x,t)$	
(b) $f_{xt}(x,t)$	
(c) $f_{tx}(x,t)$	
(d) $f_{tt}(x,t)$	

Math 200, Second-order partial derivatives (Section 14.7)

3.	Reread Example 4. (a) What is the function $f(x, y)$ we are approximating in this problem?
	(b) What is the linear approximation of $f(x, y)$ near $(0, 0)$?
	(c) What is the quadratic approximation of $f(x, y)$ near $(0, 0)$?
4.	What struck you in reading this section? What is still unclear to you? What questions do you have

Name:	Section:
Read Section 15.1. Take notes in your notebook, making surformulas in blue boxes. Then answer the following questions.	
Reading Questions	
1. (a) What is a critical point of a multivariate function	?
(b) What are the three kinds of critical points?	
2. Try Exercises 2 and 3 at the end of the section, page 83	36.

- 3. Consider the function $f(x,y) = x^2 2xy + 3y^2 8y$.
 - (a) Compute grad f(x, y), and find the critical point(s) of f(x, y).

Math 200, Critical points: local extrema and saddle points (Section 15.1)

	(b)	Compu	ite the se	econd-ord	er partial	derivativ	res of $f(x)$	(c,y).			
	(c)	Use th	e second	derivative	e test for f	unctions	of two v	variables t	o classify	each critic	cal point.
4.	Wha	at struc	k you in	reading the	his section	? What	is still u	nclear to	you? Wha	t question	as do you have

Name:	Section:
Read Section 15.2. Take notes in your notebook, a formulas in blue boxes. Then answer the following	making sure to include words and phrases in italics and g questions.
Reading Questions	
1. Explain, in your own words, the difference b	etween local and global extrema.
2. In this section we learn some conditions und on a region.	ler which a function is guaranteed to have global extrema
(a) What is the name of the theorem that	gives these conditions?
(b) What condition does the theorem impo	ose on the function itself?
(c) What two conditions does the theorem	impose on the region?
3. Try Exercises 2 and 3 at the end of the secti	ion, page 845.
,	71 0

Math 200, Constrained optimization: Lagrange multipliers (Section 15.3)

Name:	Section:
	3. Take notes in your notebook, making sure to include words and phrases in italics and boxes. Then answer the following questions.
Reading Quest	ions
1. Reread the 848-849) ca	introductory example (maximizing production subject to a budget constraint, pages refully.
` '	s problem, what is the objective function, namely the quantity we are trying to maximize? the formula for this function, and state what it represents.)
(b) In this	s problem, what is the constraint function? (Again, state the formula and its meaning.)
` /	d the last paragraph on page 848. Complete the sentence: The maximum value of the ive function, subject to the constraint, occurs at the point where
(d) Rerea	d page 849, on Lagrange multipliers. At the optimum point, what two vectors are parallel?
2. (a) Rerea	d Example 1, and try Exercise 1, at the end of the section, page 855.

(b) Show that f(x,y)=x+y does not have any local maxima or minima in the interior of the circle, i.e. in the region $x^2+y^2<1$. (Use the methods of 15.1.)

(c) What and where are the global extrema of f(x,y) on the (closed and bounded!) region $x^2+y^2\leq 1$?

Math 200,	Polar coordinates (Section 8.3)	
Name:		Section:
Read the beg	ginning of Section 8.3, only up to and including	ng Example 8. Take notes in your notebook,
making sure	to include words and phrases in italics and form	ulas in blue boxes. Then answer the following

Reading Questions

questions.

1. Reread Examples 1 and 2, then practice converting between Cartesian and polar coordinates by working through Exercises 1-8 at the end of the section, page 438.

2. Reread Example 6. Graph $r=1+2\cos\theta$ yourself by hand by making a table with θ -values $\theta=0,\pi/6,\pi/4,\pi/3,\pi/2$ in the first quadrant and the corresponding angles in the other quadrants.

Name:	Section:
	ons 16.1 and 16.2. Take notes in your notebook, making sure to include words and phrases in formulas in blue boxes. Then answer the following questions.
Reading (Questions
1. Rerea	ad Example 1 in Section 16.1.
(a) '	What does the function $D = f(x, y)$ represent in this example? (Include units.)
(b) '	What do the numbers 0.2, 0.7, 1.2, 1.2, 0.1, represent? (Again, include units.)
(c) '	What does the factor 750 represent? (Units?)
(d) '	What do the products 0.2×750 , 0.7×750 , 1.2×750 , 0.1×750 , represent? (Units?)
	What does the sum $0.2 \times 750 + 0.7 \times 750 + 1.2 \times 750 + 0.1 \times 750 + \dots + 1.2 \times 750$ represent? (Units?)
	What are the upper and lower estimates for the fox population? What is the discrepancy between them? How could we improve this?
2. Rerea	ad the beginning of Section 16.2, where the fox example is discussed again.

(a) Write down the expression that gives the exact value of the fox population using nested integrals.

Math 200, Double integrals (Sections 16.1, 16.2)

	(b) What is the proper name for a nested integral like this?
3.	Reread Example 1 in Section 16.2, and try Exercise 5 at the end of the section, page 882.
4.	What struck you in reading this section? What is still unclear to you? What questions do you have?

Name:	Section:
Read Section 16.3. Take notes in your notebook, m formulas in blue boxes. Then answer the following of	aking sure to include words and phrases in italics and questions.
Reading Questions	

1. Try Exercise 1 at the end of the section, page 887.

2. Try Exercise 5 at the end of the section, page 887.

Name: _	Section:
	ion 16.4. Take notes in your notebook, making sure to include words and phrases in italics and a blue boxes. Then answer the following questions.
Reading	Questions
1. Rere	ad the subsection entitled "What is dA in Polar Coordinates?" on page 892.
(a)	When using Cartesian (rectangular) coordinates, a grid is made of horizontal and vertical lines. What curves are used to create a grid for polar coordinates?
. ,	When using Cartesian coordinates, the area of a rectangle of width Δx and height Δy is always $\Delta A = \Delta x \cdot \Delta y$, regardless of the position of the rectangle with respect to the origin. Is this true for the areas of the "bent rectangles" in a polar coordinate grid?
(c)	What is the formula for the approximate area of a "bent rectangle" in a polar coordinate grid?
2. Rere	ad Example 3.
	Try Exercises 5 and 6 at the end of the section, page 894.

	(b) Try I	Exercises 7 a	and 8 at the en	d of the section	n, page 894.		
3.	What stru	ıck you in re	eading this sect	ion? What is s	till unclear to yo	u? What questions	s do you have?

Math 200, Integrals in cylindrical and spherical coordinates (Section 16.5)

Triatii 200, Integrais in cynnairear ana spir	eriour coordinates (Section 1919)
Name:	Section:
Read Section 16.5. Take notes in your notebook, a formulas in blue boxes. Then answer the following	making sure to include words and phrases in italics and g questions.
Reading Questions	
1. Reread the subsections entitled "Cylindrical Coordinates" (page 899), and try Exercise 1	(- 0 / -

- 2. For Cartesian coordinates the volume element is dV = dx dy dz.
 - (a) What is the volume element for cylindrical coordinates?

dV =

(b) What is the volume element for spherical coordinates?

dV =

Read Section 21.2. Take notes in your notebook, making sure to include words and phrases in italics and formulas in blue boxes. Then answer the following questions.

Reading Questions

1. Try Exercises 1 and 2 at the end of the section, page 1087.

2. Suppose we have a function f(x, y) which can be expressed in terms of variables s and t using the change of coordinates x = 2s and y = 3t. We wish to integrate f over the unit square in the st-plane.

(a) What is the corresponding region in the xy-plane? What is its area?

(Hint: The four corners of the unit square in the st-plane are (0,0), (0,1), (1,0), and (1,1). To find the corresponding points in the xy-plane, use the formulas for the change of coordinates.)

(b) What is the Jacobian for this change of coordinates?

Name:	Section:
Read Section 17.1. Take notes in your notebook, making sure to incommulas in blue boxes. Then answer the following questions.	clude words and phrases in italics and
Reading Questions	
1. Reread Examples 4 and 5 in Section 17.1, and try Exercises 7 923.	and 13 at the end of the section, page
2. Reread Examples 2 and 6 in Section 17.1, and try Exercises 2 923.	1 and 25 at the end of the section, page

Name:	Section:
Read Section 21.1. Take notes in your notebook, making sure to incommulas in blue boxes. Then answer the following questions.	clude words and phrases in italics and
Reading Questions	
1. Try Exercises 1-4 at the end of the section, page 1082.	
2. Reread Example 2, and try the following exercise: Write a part point $(1,2,3)$ and containing the vectors $\vec{v}_1 = \hat{i} + \hat{j} + \hat{k}$ and \vec{v}_2	rametrization of the plane through the $\hat{j}_2 = \hat{i} - \hat{j} + 2\hat{k}$.
3. Try Exercises 5 and 6 at the end of the section, page 1082.	

4. Reread the subsection "Parameterizations Using Spherical Coordinates," page 1077-1079, and try Exercise 9 at the end of the section, page 1082.
5. What struck you in reading this section? What is still unclear to you? What questions do you have?

Name:	Section:
Read Section 17.3. Take notes in your notebook, making su formulas in blue boxes. Then answer the following questions	
Reading Questions	
1. Give two examples of vector fields arising in physics.	
2. Reread Examples 1 and 2, and try Exercise 13 at the three x -values and three y -values (as in Example 1) to	·

Name:	Section:
Read Sections 18.1 and 18.2. Take notes in your notebook, making sur italics and formulas in blue boxes. Then answer the following question	
Reading Questions	
1. Reread the subsection of 18.1 entitled "What Does the Line Integrate the end of the section, page 964.	gral Tell Us?" and try Exercises 1-3
2. Name one application of the line integral to physics.	
3. Reread Examples 1 and 2 in Section 18.2, and try Exercise 5 at $^{\circ}$	the end of the section, page 972.

Math 200, Gradient fields and path-independent fields (Section 18.3)

Name:	Section:
Read Section 18.3. Take notes in your notebook, making sure to include formulas in blue boxes. Then answer the following questions.	words and phrases in italics and
Reading Questions	
1. Reread the Fundamental Theorem of Calculus for Line Integrals (T at the end of the section, page 980. (Note that you do not need to complete the exercise.)	
2. (a) Explain, in your own words, what it means for a vector field t	o be path-independent.
(b) Explain, in your own words, why we might care about path-in	dependent vector fields.
(c) Restate, in your own words, what Theorem 18.2 says about pa	ath-independent vector fields.

3.	Reread Example	e 3, and try Exercise 13 a	at the end of the section, page	981.
4	XX71 1	u in roading this soction?	What is still unclear to you?	What questions do you have?
т.	What struck yo	d in reading this section:	, , , , , , , , , , , , , , , , , , ,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1.	What struck yo	u in reading this section:	,	,
7.	What struck yo	u in reading this section:	,	,
1.	What struck yo	u in reading this section:		,
1.	What struck yo	of in Teating this section:		1
1.	What struck yo	u in reading this section:		1
1.	What struck yo	d in reading this section:		
1.	What struck yo	d in reading this section:		

Name:	Section:
Read Section 18.4. Take notes in your notebook, maki formulas in blue boxes. Then answer the following que	
Reading Questions	
1. Explain, in your own words, how to determine we circulation.	hether a vector field is path-independent using
2. Reread Example 4, and then try Exercise 11 at t	the end of the section, page 993.
3. True or false. Determine whether each staten giving a specific reference (e.g. an example, a the	nent is true or false, and explain how you know, eorem, a page number.)
(a) If \vec{F} is a gradient field with continuous part	ial derivatives, then its curl is 0.
(b) If the curl of a vector field \vec{F} is zero, then \vec{F}	\vec{r} is path-independent.

Math 200, Path-dependent vector fields and Green's Theorem (Section 18.4)

/ \ TC	1' ' C 1 1
(c) If a vector field \vec{F} is undefined at some point, then it cannot be	≥ a gradient neid
(c) if a vector hera i is anachired at some point, then it cannot so	o a gradiente nera.

Name: Section:
Read Section 19.1. Take notes in your notebook, making sure to include words and phrases in italics and formulas in blue boxes. Then answer the following questions.
Reading Questions
1. Reread the beginning of Section 19.1, up to but not including the subsection Example 2.
(a) Explain, in your own words, what flux means in the context of fluid flow.
(b) Why is it useful, when computing flux, to represent area by a vector?
(c) What is the area vector of a disk of radius 2 in the xy-plane oriented upward?
(d) What is the flux of a constant vector field $\vec{F}(x,y,z)=\vec{v}$ through a flat surface S with area vector \vec{A} ?
(e) Try Exercise 16 at the end of Section 19.1, page 1013.

Name:	Section:
Read Section 19.2. Take notes in your notebook, ma formulas in blue boxes. Then answer the following of	aking sure to include words and phrases in italics and questions.
Reading Questions	
1. In Section 19.2, we calculate flux through three $d\vec{A}$, which can be thought of as the area vector	ee types of surfaces. In each case we need to determine or for a small patch of the surface.
(a) Reread the beginning of Section 19.2, up surface that is the graph $z = f(x, y)$, orie	to but not including Example 1. What is $d\vec{A}$ for a ented upward?
	Field Through a Cylindrical Surface" up to but not cylinder of radius R centered on the z axis and oriented
	Field Through a Spherical Surface" up to but not phere of radius R , centered at the origin and oriented
2. Try Exercise 5 at the end of the section, page	1022.

Name: _	Section:
	tion 21.3. Take notes in your notebook, making sure to include words and phrases in italics and in blue boxes. Then answer the following questions.
Reading	Questions
1. Rere	ead the first page of the section.
(a)	Suppose we parameterize a surface by $\vec{r} = \vec{r}(s,t)$, for s,t in some region \mathcal{R} in the st -plane (parameter space). Consider a patch on the surface corresponding to a rectangle in \mathcal{R} with side lengths Δs and Δt .
(b)	Fill in the blanks: "If Δs and Δt are small, the area vector $\Delta \vec{A}$, of the patch is
	approximately the area vector of the defined by the
	displacement vectors \vec{v} and \vec{w} , where $\vec{v} = \underline{\qquad} \Delta s$ and $\vec{w} = \underline{\qquad} \Delta t$. Thus
	$\Delta \vec{A} \approx$ "
(c)	What is the formula for $d\vec{A}$ in this case?
2. Try	Exercise 1 at the end of the section, page 1091.

Name:	Section:
Read Sections 19.3 and 19.4. Take notes in your notebook, making sitalics and formulas in blue boxes. Then answer the following question	
Reading Questions	
1. Reread the opening two paragraphs of Section 19.3.	
(a) Explain, in your own words, what the divergence of a vect	for field is.
(b) Try Exercise 3 at the end of Section 19.3, page 1030.	
2. Practice using the Cartesian coordinate definition of divergence Section 19.3, page 1031.	e by trying Exercise 7 at the end of
 3. Now in Section 19.4, reread the subsection "Calculating the Fluctuation and Property is the closed finding the total flux of a vector field \$\vec{F}\$ out of \$W\$. (a) On one hand, we can calculate the total flux using a flux in representing the total flux out of \$W\$? 	surface S , and we are interested in
(b) On the other hand, we can also use the divergence, which volume $\Delta V,$ what is the flux out of the box?	is the flux density. For a small box of

	(c)	Explain, in gall the small	your own word boxes.	s, why the tota	al flux out of V	V is the same a	s the sum of the	e fluxes of
	(d)	Write an int	egral that repi	resents the tota	\mathcal{A} flux out of V	V using the dive	ergence.	
4.	Rere	ead Example	1, and try Exe	ercise 7 at the ϵ	end of the sect	ion, page 1037.		
5.	Wha	at struck you	in reading this	s section? Wha	t is still uncle	ar to you? Wha	at questions do	you have?

Name:	Section:
Read Section 20.1. Take notes in your notebook, making sure to incluformulas in blue boxes. Then answer the following questions.	de words and phrases in italics and
Reading Questions	
1. Practice using the Cartesian coordinate definition of curl by comof the section, page 1053.	npleting Exercises 3 and 5 at the end
2. Reread Example 2, and try Exercises 11-14 at the end of the sec	tion, page 1053.

Name: Section:
Read Section 20.2. Take notes in your notebook, making sure to include words and phrases in italics and formulas in blue boxes. Then answer the following questions.
Reading Questions
1. Reread the subsection "Calculating the Circulation from the Circulation Density." Here we have an oriented surface S with boundary C , and we are interested in the circulation of a vector field \vec{F} around C .
(a) On one hand we can calculate the circulation using a line integral. What is the line integral representing the circulation around C ?
(b) On the other hand, we can also use the curl, which is related to the circulation density. For a
small piece of the surface with area vector $\Delta \vec{A} = \vec{n} \Delta A$, what is the circulation around the boundary of the piece?
(c) Explain, in your own words, why the circulation around C is the same as the sum of the circulations around each of the small pieces of S .
(d) Write an integral that represents the circulation of \vec{F} around C using the curl.

2. Reread Example 1, and try Exercise 6 at the end of the section, page 1059.
3. What struck you in reading this section? What is still unclear to you? What questions do you have?

Name:	Section:
Read Section 20.3. Take notes in your notebook, making sure to include formulas in blue boxes. Then answer the following questions.	e words and phrases in italics and
Reading Questions	
1. List the three fundamental theorems discussed in this section. In general pattern into which each of these theorems fits.	your own words, describe the
2. Practice using the Curl Test by completing Exercises 1 and 2 at the	he end of the section, page 1065.

3. Practice using the Divergence Test by completing Exercises 7 and 8 at the end of the section, page 4. What struck you in reading this section? What is still unclear to you? What questions do you have?