Logistical Information

- 1:30 pm 3:30 pm Thurs May 17, in OWS 257
- Most problems will be similar to problems on homework, quizzes, and previous exams.
- No calculators, notes, books, cell phones permitted.
- Bring whatever you need to help yourself concentrate for 2 hrs: watch, water bottle, granola bar ...

The final exam is cumulative.

- Consult your review sheets for Exams 1 and 2 for lists of basic facts and formulas to know, topics to know, and review problems for Units 1 and 2.
- Also use the problems from Quizzes 1-6 and Exams 1 and 2 for practice.

Topics from Unit 3: Vector Calculus

- Line integrals: direct evaluation using parametrization and evaluation using FTCLI or Green's Theorem, path-independent/conservative fields vs path dependent fields, circulation along a curve, gradient fields, potential function for a gradient field (Ch 18)
- Flux and flux density (divergence), flux integrals: direct evaluation (by "pure thought", by using a special case, or by parametrization) and evaluation using the Divergence Theorem (Ch 19, S 21.3)
- Circulation density and the curl of a 3D vector field, evaluating line integral in 3D or a flux integral using Stokes' Theorem, the Curl Test, the Divergence Test (Ch 20)

Review Exercises for Unit 3. Problems for discussion assignment (DRev) are in bold.

From the 6th edition of the textbook:

- Ch 18 Rev: 1-31, 36-39, 41-47; D: 18, 21, 41, 44
- Ch 19 Rev: 1-3, 10-20, 30-34, 40; Challenge: 55, 56, 58; D: 18, 19,32, 34
- Ch 20 Rev: 17-20, 22, 25, 26, 31-40; D: 22, 32, 37, 40*
- Ch 21 Rev: D: 6 (answer: 195)

*For this problem, assume the cylinder is *closed* (so has sides and two ends), and oriented outward.

Additional review problems:

- 1. Calculate the circulation of $\vec{F} = xy^2 \hat{i} + 2x^2y \hat{j}$ around the triangle with vertices (0,0), (1,0), and (1,1), traversed in that order.
- 2. Evaluate the line integral of $\vec{F} = y^3 \hat{i} x^3 \hat{j}$ along the unit circle, oriented clockwise.
- 3. Compute the circulation of $\vec{F} = y\hat{i} + z\hat{j} + x\hat{k}$ around the circle of radius 2 in the lying in the plane 3x y + 2z = 6, centered at the point (0, 0, 3), and oriented counter-clockwise when viewed from above.
- 4. Calculate $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F} = (x+y)\hat{i} + (x+z)\hat{j} + (y+z)\hat{k}$ and C is a square of side length 2 lying in the plane 3x y + 2z = 6, centered at the point (0,0,3), and oriented counter-clockwise when viewed from above.

- 5. Evaluate the line integral of $\vec{F} = (2x+y)\hat{i} + (x-2y)\hat{k}$ around the parallelogram whose vertices are (0, -6, 0), (2, 0, 0), (2, 6, 3), and (0, 0, 3), traversed in that order.
- 6. Evaluate $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F} = yz\hat{i} + 3xz^2\hat{j} + x^2y\hat{k}$ and C is the boundary of the rectangle in the plane x = 2 with vertices (2,0,0), (2,3,0), (2,3,1), and (2,0,1), traversed in that order.

Answers: 1. 1/4, 2. $3\pi/2$, 3. $-16\pi/\sqrt{14}$, 4. 0, 5. -42, 6. -6.