Flux & the Flux Integral

Flux: Flow Rate

· volume of fluid passing through a surface per unit time

Most Basic Case

· fluid has constant velocity

· surface is flat & I fluid velocity

flat drain

water flows straight through

area: 20 cm²

speed: 2 cm/sec.

How much water passes through drain per second?

volume : ____ = ___

Flow Rate: speed × area = ____

Basic Case

- · fluid has constant velocity
- · surface is flat

flat drain

area: A

water flows through at an angle

velocity: \vec{v}

How much water passes through drain per second?

volume :

Need to find h.

volume :

unit normal for surface: n

$$h = \frac{\text{Scalar component of } \vec{v}}{\text{parallel to } \hat{n}} = \underline{\hspace{1cm}}$$

area vector :
$$\overrightarrow{A} = A \hat{n}$$

Flux Integral

If the fluid velocity is NOT _____ we or if the surface is NOT ____ we typically need a flux integral.

Divide surface into small patches

· F approx const. } flux thm' $\approx \overrightarrow{F} \cdot \Delta \overrightarrow{A}$ · patch approx flat } patch

Total =
$$\int_{S} \hat{F} \cdot d\hat{A} = \int_{S} (\hat{F} \cdot \hat{n}) dA$$