For an estimator $\hat{\theta}$ we define the **mean squared error** to be:

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2].$$

The mean squared error may be expressed in terms of the variance and bias of the estimator:

$$MSE(\hat{\theta}) = V(\hat{\theta}) + [Bias(\hat{\theta})]^2.$$

Recall that the bias of an estimator is $\operatorname{Bias}(\hat{\theta}) = E(\hat{\theta}) - \theta$.

In this problem, we consider the case where the population distribution is normal, and the parameter of interest is the variance, σ^2 . We consider all estimators of the form KS^2 , where K is a constant and S^2 is the sample variance. The question is to determine which of these has the *smallest* mean squared error.

To minimize $MSE(KS^2)$, we use Calculus: calculate $MSE(KS^2)$, differentiate with respect to K, equate to zero, and solve for K. (To make sure this K corresponds to a minimum, not a maximum, of $MSE(KS^2)$, we can take another derivative and verify that it is positive.)

Along the way we will need to use the following facts:

- 1. For any random variable $X, V(X) = E(X^2) E(X)^2$.
- 2. For any constant a and any random variable X, E(aX) = aE(X).
- 3. As mentioned in the hint: $E((S^2)^2) = (n+1)\sigma^4/(n-1)$.
- 4. The sample variance S^2 is an unbiased estimator for the population variance σ^2 , so $E(S^2) = \sigma^2$.