Name: ____

Reading Questions

- 1. Make sure you know the definitions of a splitting field for a polynomial and a polynomial that splits over a field and that you understand the statements of Theorem 21.31 and Corollary 21.24 (existence and uniqueness–up to isomorphism–of splitting fields).
- 2. Reread Example 21.29. Explain why $\mathbb{Q}(\sqrt{2}, i)$ is a splitting field for p(x).

3. Reread Example 21.30. Find a splitting field for p(x), and explain why $\mathbb{Q}(\sqrt[3]{3})$ is not one.

Hint: Recall that the complex cube roots of 1 are 1, ω , and ω^2 , where $\omega = \frac{-1 + \sqrt{3}i}{2}$ and $\omega^2 = \frac{-1 - \sqrt{3}i}{2}$.

4. True or false, with reasons.

Let E be an extension of a field F and $p(x) \in F[x]$ of degree n.

(a) The extension field E is a splitting field p(x) if p(x) factors into linear factors in E[x].

(b) If p(x) has n distinct roots in E, then it splits over E.

(c) If E and K are splitting fields for p(x) over F, then there is an isomorphism $\phi: E \to K$ such that $\phi(F) = F$.

5. What struck you in this reading? What is still unclear? What remaining questions do you have?