
Math 316, Additions/Modifications to Homework Problems

7.3.04 Verify that 2 is not a primitive root mod 17, but 3 is a primitive root mod 17.

7.5.03 With public information b = 2, c = 58, p = 103 for an ElGamal cipher with included header
br = 98, use the private/secret key ` = 47 (the discrete log of c = 58 base b = 2 modulo p = 103) to decrypt
the ciphertext ‘79’.

W 7.5 An ElGammal cipher has public information b = 82, c = 85, and p = 97.

(a) Verify that the discrete log of 85 base 82 mod 97 is ` = 54.

(b) Use the private key ` = 54 to decrypt the ciphertext y = 55 with included header br = 32.

13.1.07 Note: For this problem, you may use Mathematica or another computer programming language
to generate tables of numbers of the form bn−1 %n and test for primality. Some helpful Mathematica
commands are Table, PowerMod, and PrimeQ.

13.3.01 Compute the quadratic (Legendre) symbol
(

b
p

)
2

by hand for (a) p = 3 and 0 ≤ b ≤ 2, (b) p = 5

and 0 ≤ b ≤ 4, and (c) p = 7 and 0 ≤ b ≤ 6.

13.3.02 Compute the extended quadratic (Jacobi) symbol
(
b
n

)
2

for n = 15 and n = 21 by hand.

13.4.02 (a) How many numbers b in the range 0 < b < 560 should we use with the Solovay-Strassen Test
to conclude with probability 80% that 561 is prime? (b) Run the test with b = 35, 281, and 463. (You may
find the Mathematica command JacobiSymbol helpful.) (c) Choose 10 ‘random’ integers b with
0 < b < 560, and run the test with them. What can you conclude?

14.3.01 Alice has a secret: the factorization of n = 21 (which we pretend not to know.) Bob chooses
x = 10. (a) Check that z = x2 mod 21 is 16. (b) After sending z = 16 to Alice, Bob receives y = 17
from Alice. Show that Bob can find the factorization of 21 by computing gcd(n, x− y) and gcd(n, x+ y),
using the Euclidean algorithm.

14.3.02 Alice has a secret: the factorization of 21 = 3 · 7. (Don’t tell!) Bob chooses an integer x in the
range 1 < x < 21, computes z = x2 mod 21 = 16, and sends z to Alice. (a) Alice computes the principal
square roots w1 and w2 of 16 modulo the primes p = 3 and q = 7, respectively, using the formulas
w1 = z(p+1)/4 mod p and w2 = z(q+1)/4 mod q. What are w1 and w2? (b) Alice chooses y1 = −w1 and
y2 = w2 and computes y (reduced modulo 21) such that y = y1 mod p and y = y2 mod q using Sun Ze’s
Theorem. What is y?

14.3.03 Alice has a secret: the factorization of n = 327 653. Bob chooses x = 200 005. (a) Bob sends
z = x2 mod n to Alice. What is z? (b) Bob receives y = 312 140 from Alice. Compute gcd(n, x− y) and
gcd(n, x+ y), using the Euclidean algorithm. Have you found the factorization of n?

14.3.04 Alice has a secret: n = 330 481 = 563 · 587. Bob chooses an integer x in the range
1 < x < 330 481 and computes z = x2 mod n = 175 422. (a) Alice computes the principal square roots w1

and w2 of z modulo the primes p = 563 and q = 587, respectively. What are w1 and w2? (b) Alice
chooses y1 = w1 and y2 = −w2 and computes y (reduced modulo n) such that y = y1 mod p and y = y2
mod q using Sun Ze’s Theorem. What is y?

14.3.05 Alice has two secrets s0 = 23 and s1 = 32. She will use oblivious transfer to reveal one of the
secrets to another person, without herself knowing which secret has been revealed, so she publishes the
following information publically: p = 103, g = 2, c = 25. (a) Bob wishes to know s0 so he chooses his bit
i = 0. He also chooses a random integer x in the range 1 < x < 102: x = 47. Bob computes b0 = gx mod p
and b1 = c · g−x mod p and sends (b0, b1) to Alice, while keeping i = 0 and x = 47 secret. What are b0 and
b1? (b) Alice checks that b0b1 = c mod p. Check this yourself. (c) Alice chooses y0 = 61 and y1 = 11
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and computes a0, a1, t0, t1, m0 and m1 as described in the text. Compute these numbers for yourself.
What are they? (d) Alice sends a0, a1, m0, and m1 to Bob but keeps t0 and t1 secret. Bob acquires the
secret s0 by computing ax0 = t0 and s0 = m0 − t0. Check that this works.

14.3.06 Alice has the same two secrets and the same public information as in the previous problem. (a)
Bernie wishes to know s1 so he chooses his bit i = 1. He also chooses a random integer x in the range
1 < x < 102: x = 47. Bernie computes b1 = gx mod p and b0 = c · g−x mod p and sends (b0, b1) to Alice,
while keeping i = 1 and x = 47 secret. What are b0 and b1? (b) Alice checks that b0b1 = c mod p. Check
this yourself. (c) Alice chooses y0 = 55 and y1 = 14 and computes a0, a1, t0, t1, m0 and m1 as described
in the text. Compute these numbers for yourself. What are they? (d) Alice sends a0, a1, m0, and m1 to
Bernie but keeps t0 and t1 secret. Bernie acquires the secret s1 by computing ax1 = t1 and s1 = m1 − t1.
Check that this works.

14.3.07 Alice has a secret: the factorization of n = 450 097 = 659 · 683. Bob chooses x = 1 000. (a) Bob
sends z = x2 mod n to Alice. What is z? (b) Alice computes principal square roots w1 and w2 of z
modulo p = 659 and q = 683 respectively. She chooses y1 = ±w1 and y2 = ±w2. List the four possible
choices for (y1, y2), and in each case find y (reduced modulo n) such that y = y1 mod p and y = y2 mod q
using Sun Ze’s Theorem. (c) Which choices will reveal the secret to Bob? Justify your answer by showing
how Bob can recover the secret in each case that it is possible.

14.4.01 Peter knows the factorization n = 338 603 = 571 · 593, but Vera does not. Vera chooses a random
integer x = 6001, computes z = x4 %n, and sends z to Peter. (a) What is z? (b) Peter computes the
principal square roots y1 and y2 of z modulo 571 and 593, respectively. What are y1 and y2? (c) Peter
finds an integer y satisfying y = y1 mod 571 and y = y2 mod 593, with 0 < y < n. What is y? (d) Vera
checks that y2 = z. Check this for yourself. **Warning: this problem needs repair, since 593 is not
congruent to 3 mod 4.**

14.4.02 Vera wishes to cheat and use Peter as a square root oracle, in order to find the factorization of
n = 338 603. Vera chooses three random integers x1, x2, x3, computes their squares w1, w2, w3 modulo n
and sends them to Peter. Peter returns square roots y1, y2, y3 of w1, w2, w3 modulo n. (a) What are the
chances that Vera can factor n using this information? (b) Given that Vera’s choices, x1 = 100 001,
x2 = 54 321, and x3 = 6 001, return y1 = 238 602, y2 = 284 282, and y3 = 175 006 from Peter, can Vera
factor n? If so, which pair(s) (xi, yi) allow her to factor n? **Warning: this problem needs repair, since
593 is not congruent to 3 mod 4.**

14.4.03 Peter knows the secret factorization n = 450 097 = 659 · 683 and wishes to prove to Vera that he
knows the factorization of n without divulging the prime factors. He chooses a secret v = 864 and
publishes s = v2 %n. Further he chooses random secret r1, . . . , r5: 87, 2345, 45, 9302, 8392. He sends
si = r2i %n to Vera. (a) What is s? What are s1, . . . , s5? (b) Vera chooses a partition S1 = {1, 3},
S2 = {2, 4, 5} of indices and sends this information to Peter. Peter computes ti = v · ri for i ∈ S1, namely
for i = 1, 3. He sends Vera the list {t1, r2, t3, r4, r5}. What is the list Peter sends to Vera? (c) Vera checks
that t2i = s · si %n for i = 1, 3 and r2i = si %n for i = 2, 4, 5. Check this yourself. (d) How is this
convincing evidence that Peter knows the factorization of n?

14.4.04 Peter knows the secret factorization n = 216 221 = 463 · 467 and wishes to prove to Vera that he
knows the factorization of n without divulging the prime factors. He chooses a secret v = 89 and publishes
s = v2 %n. Further he chooses random secret r1, . . . , r6: 345, 729, 292, 4839, 439, 398. He sends si = r2i %n
to Vera. (a) What is s? What are s1, . . . , s6? (b) Vera chooses a partition S1 = {1, 4, 5}, S2 = {2, 3, 6}
of indices and sends this information to Peter. Peter computes ti = v · ri for i ∈ S1. He sends Vera the list
{t1, r2, r3, t4, t5, r6}. What is the list Peter sends to Vera? (c) Vera checks that t2i = s · si %n for i ∈ S1

and r2i = si %n for i ∈ S2. Check this yourself.

16.4.03 Simply find the period of the LFSR given in problem 16.4.03 in the textbook; assume that all
computations are modulo 2.
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16.4.04 Simply find the period of the LFSR given in problem 16.4.04 in the textbook; assume that all
computations are modulo 2.

16.4.05 Simply find the period of the LFSR given in problem 16.4.05 in the textbook; assume that all
computations are modulo 2.

16.6.01 Let p be a prime congruent to 3 modulo 4 and S be the set of squares in (Z/p)×. Show that the
squaring map x 7→ x2 is a bijection of S to itself.

16.6.02 Let p = 3, q = 7, n = pq. (a) Find the set S of squares in (Z/n)×. (b) Write out the bijection
S → S given by x 7→ x2 explicitly, e.g. via a table. (c) What is the maximal period of a sequence with
recursion relation: si+1 = s2i %n, given that the seed s0 is in (Z/n)×? (d) Find all “bad seeds” in
(Z/n)×, i.e. all elements xbad in (Z/n)× such that if s0 = xbad, si+1 = si for all i ≥ 1.

16.6.03 Let p = 3, q = 11, n = pq. (a) Find the set S of squares in (Z/n)×. (b) Write out the
bijection S → S given by x 7→ x2 explicitly, e.g. via a table. (c) What is the maximal period of a
sequence with recursion relation: si+1 = s2i %n, given that the seed s0 is in (Z/n)×? (d) Find all “bad
seeds” in (Z/n)×, i.e. all elements xbad in (Z/n)× such that if s0 = xbad, si+1 = si for all i ≥ 1.

16.6.04 Let p = 7, q = 11, n = pq. (a) Find the set S of squares in (Z/n)×. (b) Write out the
bijection S → S given by x 7→ x2 explicitly, e.g. via a table. (c) What is the maximal period of a
sequence with recursion relation: si+1 = s2i %n, given that the seed s0 is in (Z/n)×? (d) Find all “bad
seeds” in (Z/n)×, i.e. all elements xbad in (Z/n)× such that if s0 = xbad, si+1 = si for all i ≥ 1.

18.1.04 Use Pollard’s rho method to find a factor of 2059.

18.3.04 Use Proth’s Corollary to prove that 577 is prime.

18.4.01 Suppose x is a large real number. Consider the interval I = [x− 50, x+ 50). (a) How many
integers are there in the interval I? (b) Use the Prime Number Theorem (twice) to estimate the number
of primes in the interval I. (c) Estimate the probability that a “random” integer in I is prime. For
x = 109, calculate this estimate explicitly, and compare to 1/ ln(x). (d) Challenge: Use L’Hopital’s rule to
show that the probability of a “random” integer in I being prime is ∼ 1/ ln(x) as x→∞.

18.4.02 Let p′1 be an integer, and suppose p1 = 2kp′1 + 1 for some positive integer k. Show that p′1 divides
p1 − 1.

18.4.03 Let p1 and p2 be odd integers and suppose t satisfies t = 1 mod p1 and t = −1 mod 4p2. Show
that (a) p1 divides t− 1, (b) p2 divides t+ 1, and (c) t ≡ 3 mod 4.

18.4.04 Suppose p = t+ 4kp1p2, where t, p1, and p2 are as in the previous exercise and k is a positive
integer. Show that (a) p1 divides p− 1, (b) p2 divides p+ 1, and (c) p ≡ 3 mod 4.

18.4.05 Suppose x is a large real number. Consider the interval I = [x− 50, x+ 50). (a) Estimate the
number of primes congruent to 1 mod 10 in the interval I using the fact that π10,1(t) ∼ t/(φ(10) ln(t)) as
t→∞. (b) Estimate the probability that a “random” integer in I is a prime congruent to 1 mod 10. For
x = 109, calculate this estimate explicitly, and compare to 1/(φ(10) ln(x)). (c) Find all primes congruent
to 1 mod 10 in I. (You could create a table in Mathematica and use the PrimeQ command, for example.)

18.5.01 Provide a primality certificate for N = 1 000 000 009. (Hint: the only primes dividing
N − 1 = 1 000 000 008 less than B = 100 are 2, 3, and 7.)

18.5.02 Provide a primality certificate for N = 1 000 000 021. (Hint: using B=30 suffices.)
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9.5.09 The same algorithm works for matrix exponentiation. Initialize X = ( 1 2
2 5 ), E = 17, Y = ( 1 0

0 1 ).
For this problem, perform the computations modulo 1001.

12.3.01 (a) Compute the following Legendre or Jacobi symbols by hand, using the fast expenentiation
algorithm, Euler’s criterion, and multiplicativity:

(
2
17

)
2
,
(

2
19

)
2
,
(

3
17

)
2
,
(

3
19

)
2
,
(

6
17

)
2
,
(

6
19

)
2
,
(

6
323

)
2
,
(

24
323

)
2
.

(b) Of the numbers 2, 3, 6, and 24, which are squares modulo 17? modulo 19? modulo 323?

12.3.02 (a) Compute the following Legendre or Jacobi symbols by hand:
(
2
5

)
2
,
(
2
7

)
2
,
(
3
5

)
2
,
(
3
7

)
2
,
(
6
5

)
2
,(

6
7

)
2
,
(

2
35

)
2
,
(

3
35

)
2
,
(

6
35

)
2
,
(
24
35

)
2
. (b) Of the numbers 2, 3, 6, and 24, which are squares modulo 5? modulo

7? modulo 35?

19.2.01 Given that 100 is a square root of b = 4 modulo 833, find a proper factor of 833 by hand.

19.2.02 Factor 105 by hand. Use Sun Ze’s Theorem to find all square roots of b = 4 modulo 105.

19.2.03 Factor 525 by hand. Use Sun Ze’s Theorem to find all square roots of b = 16 modulo 525.

19.2.04 Given that x = 4 642, y = 5 371, z = 8 176 are square roots of b = 188 modulo n = 10 013, find a
proper factor of n by hand.

19.1.01 Use Gaussian elimination to find a dependency relation among the vectors v1 = (1, 2),
v2 = (1, 0), v3 = (3, 2) in R2.

19.1.02 Use Gaussian elimination to find a dependency relation among the vectors v1 = (0, 1, 1, 0),
v2 = (1, 0, 0, 1), v3 = (1, 1, 1, 0), v4 = (1, 0, 1, 0), and v5 = (0, 1, 0, 1) in F4

2, where F2 = Z/2 is the finite field
with two elements.

19.3.01 Use Dixon’s Algorithm to factor (a) n = 3127 with factor base {2, 3} and lucky choice a = 56,
and (b) n = 3149 with factor base {2, 3, 5} and lucky choice a = 57.

19.3.02 Use Dixon’s Algorithm to factor n = 803 with factor base {2, 3, 5} and a1 = 41, a2 = 43, a3 = 51,
a4 = 82, as follows. (a) Compute bi = a2i %n for 1 ≤ i ≤ 4. Verify that each bi is 5-smooth, and write out
the prime factorization of each bi in the form bi = 2ei1 · 3ei2 · 5ei3 . (b) Compute the vectors
vi = (ei1 % 2, ei2 % 2, ei3 % 2) for each 1 ≤ i ≤ 4. (c) Use Gaussian elimination to find coefficients
c1, c2, c3, c4 ∈ F2 in a dependency relation c1v1 + c2v2 + c3v3 + c4v4 = 0. (d) Compute x = ac11 ac22 ac33 ac44
and let y be the square root (in Z) of bc11 bc22 bc33 bc44 . (This is a perfect square, as you can see by looking at
the exponents of the prime factors.) (e) Compute gcd(x± y, n) to find proper factors of n.

19.3.03 Use Dixon’s Algorithm to factor n = 923 with factor base {2, 3, 5} and a1 = 44, a2 = 46, a3 = 53,
a4 = 57. (Follow the outline given in the previous problem.)

19.4.01 Let n = 2773. (a) Find m = floor(
√
n). (b) For all a the range m+ 1 ≤ a ≤ 2m, find

b = a2 %n, and find the prime factorization of b. (You may find the Mathematica commands Table,
TableForm, and FactorInteger helpful, though you’re certainly welcome to use other commands or even
other programing languages.) (c) How many of the b’s found in the previous part are smooth with respect
to the factor base {2, 3}? with respect to {2, 3, 5}? {2, 3, 5, 7}? {2, 3, 5, 7, 11}? (d) What factor base is an
appropriate size to guarantee that, using the values from (b), we will be able to find a dependency relation
among the exponent-reduced-mod-2 vectors? (e) Construct three pairs (x, y) such that x2 = y2 mod n
but x 6= ±y mod n, given the values for a and b you have found.

19.4.02 Let n = 4343. (a) Find m = floor(
√
n). (b) For all a the range m+ 1 ≤ a ≤ m+ 40, find

b = a2 %n, and find the prime factorization of b. (c) How large a factor base is needed to find five b’s that
are smooth with respect to that factor base? Is the factor base small enough to ensure that a dependency
relation must exist among the exponent-reduced-mod-2 vectors? (d) If we extend the range to
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m+ 1 ≤ a ≤ 2m, how many b’s are there that are smooth with respect to the factor base you found in the
previous part? (e) Construct two pairs (x, y) such that x2 = y2 mod n but x 6= ±y mod n, given the
values for a and b you have found.

19.4.03 Let n = 2881. (a) Find m = floor(
√
n). (b) For all a the range m+ 1 ≤ a ≤ 2m, find

b = a2 %n, and find the prime factorization of b. (c) On what attempt do we “get lucky” and find a b
that is a perfect square in Z? (d) How many attempts are needed to generate a list of (t+ 1) b values
that are pt smooth? (You need to specify an appropriate factor base {2, 3, . . . , pt} to answer this.)

19.5.01 Let n = 4343. (a) Find the first 10 continued fractions rational approximations ri = pi/qi for√
n, as outlined in the reading questions for 19.5. (b) Construct a list of pairs (a, b) with (potential)

values for a being the numerators pi of the rational approximations ri found in (a) and (potential) values
for b being given by p2i − q2i n. (Note that this guarantees that b = a2 mod n.) Keep only those pairs (a, b)
for which b is smooth with respect to the factor basis {−1, 2, 5, . . . , 17}. (c) How many pairs do you have?
Compare this to the number of such pairs you found in ten attempts in 19.4.02.
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