Name: ____

Read and take notes on 18.2, Pollard's p-1 Method. Note: The change of base formula for logarithms is $\ln(x)/\ln(a) = \log_a(x)$. This fact is useful for understanding how the examples follow the given algorithm.

Reading Questions

- 1. Make sure you understand the meanings of the following terms: B-smooth, smoothness bound.
- 2. Note. For a set $\{p_1, \ldots, p_t\}$ of primes (usually consecutive primes, starting with 2), for a number to be $\{p_1, \ldots, p_t\}$ -smooth means that all its prime factors lie in the set $\{p_1, \ldots, p_t\}$. If $\{p_1, \ldots, p_t\}$ is the set of primes less than or equal to a bound B, than being B-smooth is equivalent to being $\{p_1, \ldots, p_t\}$ -smooth.
- 3. (a) In what cases does Pollard's p-1 method work well?

(b) Why is this method is important, despite the fact that it only works in certain special cases?

4. Fix B = 10. Give three examples of numbers that are *B*-smooth and one example of a number that is *not B*-smooth.

- 5. Consider n = 1581. Fix B = 3.
 - (a) First we choose random b in 1 < b < n. Choose b = 1000. Then compute g = gcd(b, n). What is g? Explain why we must continue with the algorithm.

- (b) The primes less than or equal to B are $p_1 = 2$ and $p_2 = 3$. For $p_1 = 2$:
 - i. Compute $\ell = \operatorname{floor}(\ln(n)/\ln(p_1))$.
 - ii. Compute $r = p_1^{\ell} \% n$.
 - iii. Replace b by $b^r \% n$.
 - iv. Compute $g = \gcd(b-1, n)$.

- (c) Explain why we may stop the algorithm at this point.
- (d) If we had found g = 1 in the previous part, what would we have needed to do?

6. What struck you in this reading? What is still unclear? What remaining questions do you have?