Math 316, Additions/Modifications to Homework Problems

Chapter 4
4.4.04 We can write the set of all outcomes as
Q = {wo,wl,wg,...7wn,...}

where w,, is the event in which the sequence of coin flips begins with n heads and then a tail. Define a
random variable X to be the number of heads before the first tail, so X (wy,) = n. Since € is an infinite set,
we will end up having to evaluate an infinite series to calculate the expected value. You may find one of
the following formulas from Calc 2 to be helpful: for |x| < 1,
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4.4.05 See the hint for 4.4.04.

4.4.08 This problem is similar to, but slightly different from 4.4.04. You will have the same set of
outcomes (2, but the appropriate random variable is now the number of flips up to and including the first
tail. So X(w,) =mn+ 1. Again, you will need to evaluate an infinite series to calculate the expected value;
use one of the formulas in the hint for 4.4.04.

4.5.07 Compute the index of coincidence of the following two character streams:

nowilaymedowntosleep
nowimaymeetonthestep

4.5.08 Is this index of coincidence computed in 4.5.07 what you would expect for two random character
streams of English? If not, is it higher or lower?

4.5.09 Encrypt the character streams in 4.5.07 with a simple shift cipher with key 3, and compute the
index of coincidence of the resulting encrypted character streams.

4.5.10 Encrypt the character streams in 4.5.07 with using Vigenere cipher with key ‘lullaby’, and
compute the index of coincidence of the resulting encrypted character streams.

4.5.11 (a) Compute the index of coincidence of the following two character streams:

wheninthecourseofhumaneventsit
becomesnecessaryforonepeopleto

(b) Is this index of coincidence what you would expect for two random character streams of English? If
not, is it higher or lower? (c) Encrypt the character streams with a simple shift cipher with key 7, and
compute the index of coincidence of the resulting encrypted character streams. (d) Explain why the index
of coincidence will not change after encrypting with a shift cipher, regardless of the key.

4.5.12 Use the Friedman attack to crack the Vigenere cipher for the ciphertext posted in the text file
friedman-ciphertext.txt on Blackboard. You may use Mathematica or another computer program. I
have posted a Mathematica notebook on Blackboard (friedman-students.nb) that walks you through the
process; it includes commands for computing the index of coincidence, etc. Bonus points if you can figure
out what the original plaintext is!

Chapter 6
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6.3.1 Run the Euclidean algorithm backwards to find the inverse. (You do not need to use the matrix
way of doing the computation.)

6.3.2 Run the Euclidean algorithm backwards to find the inverse. (You do not need to use the matrix
way of doing the computation.)

Chapter 7

7.3.04 Verify that 2 is not a primitive root mod 17, but 3 is a primitive root mod 17.

7.5.03 With public information b = 2, ¢ = 58, p = 103 for an ElGamal cipher with included header
b" = 98, use the private/secret key £ = 47 (the discrete log of ¢ = 58 base b = 2 modulo p = 103) to decrypt
the ciphertext ‘79’.

7.5.04 An ElGammal cipher has public information b = 82, ¢ = 85, and p = 97.
(a) Verify that the discrete log of 85 base 82 mod 97 is ¢ = 54.

(b) Use the private key ¢ = 54 to decrypt the ciphertext y = 55 with included header " = 32.

Chapter 9

9.5.09 The same algorithm works for matrix exponentiation. Initialize X = (12), E=17,Y = (}9).
For this problem, perform the computations modulo 1001.

9.6.02 Before using the formula in the theorem, check to make sure the theorem applies: check that 19 is
the right kind of prime and that 6 is a square mod 19 (using quadratic reciprocity.) After you use the
formula to find the principal square root, check that your answer is actually a square root of 6 mod 19 (by
squaring it), and check that your answer is itself a square (using quadratic reciprocity.)

9.6.03 Before using the formula in the theorem, check to make sure the theorem applies: check that 71 is
the right kind of prime and that 2 is a square mod 71 (using quadratic reciprocity.) After you use the
formula to find the principal square root, check that your answer is actually a square root of 2 mod 71 (by
squaring it), and check that your answer is itself a square (using quadratic reciprocity.)

Chapter 12

12.3.01 (a) Compute the following Legendre or Jacobi symbols by hand, using the fast expenentiation

algorithm, Euler’s criterion, and multiplicativity: (1—27)2, (1—29)27 (1—37)2, (1—?’9)2, (%)2, (16—9)2, (%)27 (%)2
(b) Of the numbers 2, 3, 6, and 24, which are squares modulo 17? modulo 19? modulo 323?

12.3.02 (a) Compute the following Legendre or Jacobi symbols by hand: (%)27 (%)Qa (%)27 (%)2’ (g)zv
(2)2, (32—5)2, (%)2, (%)2, (%)2. (b) Of the numbers 2, 3, 6, and 24, which are squares modulo 57 modulo
77 modulo 357

Chapter 13
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13.1.07 Note: For this problem, you may use Mathematica or another computer programming language
to generate tables of numbers of the form "' % n and test for primality. Some helpful Mathematica
commands are Table, PowerMod, and PrimeQ.

13.3.01 Show that 341 is a Fermat pseudoprime base 2, but not an Euler pseudoprime base 2. (You may
use PowerMod for the exponentiation, but use quadratic reciprocity to compute the Jacobi symbol.)

13.3.02 Show that 91 is a Fermat pseudoprime base 3, but not an Euler pseudoprime base 3. (You may
use PowerMod for the exponentiation, but use quadratic reciprocity to compute the Jacobi symbol.)

13.3.03 Show that 1387 is a Fermat pseudoprime base 2, but not an Euler pseudoprime base 2. (You
may use PowerMod for the exponentiation, but use quadratic reciprocity to compute the Jacobi symbol.)

13.3.04  Show that 1729 is an Euler pseudoprime base b = 2, b = 3, and b = 5. (You may use PowerMod
for exponentiation, but use quadratic reciprocity to compute the Jacobi symbols.)

13.4.02 (a) How likely do we suppose it is that 1729 is truly prime, given that it passes the
Solovay-Strassen Test with bases b =2, b =3, and b = 57 (See 13.3.04.) (b) Choose three ‘random’
integers b with 1 < b < 1728, and run the Solovay-Strassen Test with them. (You may use the
JacobiSymbol command to compute the Jacobi symbols, if you want.) What can you conclude?

13.4.03 (a) How many numbers b in the range 0 < b < 560 should we use with the Solovay-Strassen Test
to conclude with probability 80% that 561 is prime? (b) Run the test with b = 35, 281, and 463. (You may
use the JacobiSymbol command in Mathematica.) (¢) Choose 10 ‘random’ integers b with 1 < b < 560, and
run the test with them. What can you conclude?

13.6.01 Hint: First write n — 1, which is 1280, in the form (27) - m, where m is odd. To do this, just
factor out as many 2s as you can from 1280. The number of 2s you factored out is your r. (You should get
r =8.) After dividing 1280 by all the 2s, you will have an odd number: this is m. (You should get m = 5.)
Next you compute b™, b*™, b*™ etc., where b is your base; here b = 41. In theory, you may need to
compute up to b ~1/2 which is 4154°, but you will probably be able to stop computing powers before
then. If b™ = 41 mod 1281, you are done. If not, keep going. If b>™ = —1 mod 1281, you are done. Keep
computing the powers of b until you get —1.

13.6.09 Consider n = 2753. Choose three ‘random’ integers b in the range 1 < b < 2752, and run the
Miller-Rabin Test with them. What can you conclude? Is your conclusion certain or just probable? If
probable, what is the probability?

Chapter 14

14.3.01 Alice has a secret: the factorization of n = 21 (which we pretend not to know.) Bob chooses

x =10. (a) Check that z = 22 mod 21 is 16. (b) After sending z = 16 to Alice, Bob receives y = 17
from Alice. Show that Bob can find the factorization of 21 by computing ged(n,z — y) and ged(n, z + y),
using the Euclidean algorithm.

14.3.02 Alice has a secret: the factorization of 21 =3 -7. (Don’t telll) Bob chooses an integer = in the
range 1 < = < 21, computes z = 22 mod 21 = 16, and sends z to Alice. (a) Alice computes the principal
square roots wy and we of 16 modulo the primes p = 3 and ¢ = 7, respectively, using the formulas

wy = 2®PTH/4 moed p and wy = 2(at1)/4 mod g. What are wy and wy?  (b) Alice chooses y; = —w; and
y2 = wo and computes y (reduced modulo 21) such that y = y; mod p and y = y2 mod ¢ using Sun Ze’s
Theorem. What is y?

14.3.03 Alice has a secret: the factorization of n = 327653. Bob chooses x = 200005. (a) Bob sends
z = 22 mod n to Alice. What is z? (b) Bob receives y = 312140 from Alice. Compute ged(n,r —y) and
ged(n, z 4 y), using the Euclidean algorithm. Have you found the factorization of n?
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14.3.04 Alice has a secret: n = 330481 = 563 - 587. Bob chooses an integer x in the range

1 < 2 < 330481 and computes z = 22 mod n = 175422. (a) Alice computes the principal square roots w;
and wy of z modulo the primes p = 563 and g = 587, respectively. What are wy and wy? (b) Alice
chooses y; = wy and y2 = —wy and computes y (reduced modulo n) such that y = y; mod p and y =y
mod ¢ using Sun Ze’s Theorem. What is y?

14.3.05 Alice has two secrets sg = 23 and s; = 32. She will use oblivious transfer to reveal one of the
secrets to another person, without herself knowing which secret has been revealed, so she publishes the
following information publically: p =103, g = 2, ¢ =25. (a) Bob wishes to know sy so he chooses his bit
i = 0. He also chooses a random integer x in the range 1 < x < 102: = = 47. Bob computes by = g* mod p
and by = ¢+ ¢~* mod p and sends (bg, b1) to Alice, while keeping ¢ = 0 and = = 47 secret. What are by and
b1?  (b) Alice checks that bpb;y = ¢ mod p. Check this yourself. (c) Alice chooses yo = 61 and y; = 11
and computes ag, a1, to, t1, mo and mq as described in the text. Compute these numbers for yourself.
What are they? (d) Alice sends aq, a1, mg, and m; to Bob but keeps to and t; secret. Bob acquires the
secret so by computing af = to and sg = mo — ¢o. Check that this works.

14.3.06 Alice has the same two secrets and the same public information as in the previous problem. (a)
Bernie wishes to know s; so he chooses his bit ¢ = 1. He also chooses a random integer x in the range

1 <z < 102: & = 47. Bernie computes by = ¢g* mod p and by = ¢- g~* mod p and sends (bg, b1) to Alice,
while keeping i = 1 and x = 47 secret. What are by and b7 (b) Alice checks that bgpb; = ¢ mod p. Check
this yourself. (c) Alice chooses yo = 55 and y; = 14 and computes ag, a1, to, t1, mo and m; as described
in the text. Compute these numbers for yourself. What are they? (d) Alice sends ag, a1, mp, and my to
Bernie but keeps tg and ¢; secret. Bernie acquires the secret s; by computing af =t; and 53 = m; — ¢;.
Check that this works.

14.3.07 Alice has a secret: the factorization of n = 450097 = 659 - 683. Bob chooses z = 1000. (a) Bob
sends z = 22 mod n to Alice. What is 2? (b) Alice computes principal square roots w; and wy of 2
modulo p = 659 and g = 683 respectively. She chooses y; = +w; and y; = +ws. List the four possible
choices for (y1,¥2), and in each case find y (reduced modulo n) such that y = y; mod p and y = y2 mod ¢
using Sun Ze’s Theorem. (c) Which choices will reveal the secret to Bob? Justify your answer by showing
how Bob can recover the secret in each case that it is possible.

14.4.01 Peter knows the factorization n = 351613 = 587 - 599, but Vera does not. Vera chooses a random
integer & = 6001, computes z = 2* %n, and sends z to Peter. (a) What is z? (b) Peter computes the
principal square roots y; and ys of z modulo 587 and 599, respectively. What are y; and y2? (c) Peter
finds an integer y satisfying y = y; mod 587 and y = y» mod 599, with 0 < y < n. What is y? (d) Vera
checks that y? = z. Check this for yourself.

14.4.02 Vera wishes to cheat and use Peter as a square root oracle, in order to find the factorization of
n = 351613. Vera chooses three random integers x1, x2, x3, computes their squares wi, ws, wz modulo n
and sends them to Peter. Peter returns square roots y1, y2, y3 of w1, we, ws modulo n. (a) What are the
chances that Vera can factor n using this information? (b) Given that Vera’s choices, 1 = 6 001,

To = 54321, and x3 = 100001, return y; = 345612, yo = 297292, and y3 = 331279 from Peter, can Vera
factor n? If so, which pair(s) (x;,y;) allow her to factor n?

Chapter 16

16.4.03 Simply find the period of the LFSR given in problem 16.4.03 in the textbook; assume that all
computations are modulo 2.

16.4.04 Simply find the period of the LFSR given in problem 16.4.04 in the textbook; assume that all
computations are modulo 2.

16.4.05 Simply find the period of the LFSR given in problem 16.4.05 in the textbook; assume that all
computations are modulo 2.
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16.6.01 Let p be a prime congruent to 3 modulo 4 and S be the set of squares in (Z/p)*. Show that the
squaring map x — 2 is a bijection of S to itself.

16.6.02 Let p=3,¢g=7,n=pq. (a) Find the set S of squares in (Z/n)*. (b) Write out the bijection
S — S given by x — z? explicitly, e.g. via a table. (c¢) What is the maximal period of a sequence with
recursion relation: s;41 = s? %mn, given that the seed sg is in (Z/n)*? (d) Find all “bad seeds” in
(Z/n)*, i.e. all elements xpaq in (Z/n)* such that if so = Tpad, Si41 = s; for all ¢ > 1.

16.6.03 Let p=3,¢g=11,n =pq. (a) Find the set S of squares in (Z/n)*. (b) Write out the
bijection S — S given by z +— 2?2 explicitly, e.g. via a table. (c) What is the maximal period of a
sequence with recursion relation: s;11 = s7 %n, given that the seed sg is in (Z/n)*? (d) Find all “bad
seeds” in (Z/n)*, i.e. all elements Tpaq in (Z/n)* such that if sg = Tpag, Si41 = s; for all i > 1.

16.6.04 Let p=7,¢g=11,n=pq. (a) Find the set S of squares in (Z/n)*. (b) Write out the
bijection S — S given by z +— 2% explicitly, e.g. via a table. (c) What is the maximal period of a
sequence with recursion relation: s;11 = s7 %n, given that the seed sg is in (Z/n)*? (d) Find all “bad
seeds” in (Z/n)*, i.e. all elements Tpaq in (Z/n)* such that if sg = Tpag, Si41 = s; for all i > 1.

Chapter 18

18.1.04 Use Pollard’s rho method to find a factor of 2059.
18.3.04 Use Proth’s Corollary to prove that 577 is prime.

18.4.01 Suppose z is a large real number. Consider the interval Z = [z — 50,z + 50). (a) How many
integers are there in the interval Z?  (b) Use the Prime Number Theorem (twice) to estimate the number
of primes in the interval Z. (c) Estimate the probability that a “random” integer in Z is prime. For

x = 10%, calculate this estimate explicitly, and compare to 1/In(z). (d) Challenge: Use L’Hopital’s rule to
show that the probability of a “random” integer in Z being prime is ~ 1/1n(x) as  — oo.

18.4.02 Let p} be an integer, and suppose p; = 2kp} + 1 for some positive integer k. Show that p) divides
P1— 1.

18.4.03 Let p; and py be odd integers and suppose t satisfies ¢t = 1 mod p; and t = —1 mod 4ps. Show
that (a) py divides ¢t — 1, (b) p2 divides t + 1, and (c) t =3 mod 4.

18.4.04 Suppose p =t + 4kp1ps, where t, p1, and py are as in the previous exercise and k is a positive
integer. Show that (a) py divides p— 1, (b) pa divides p+ 1, and (¢) p =3 mod 4.

18.4.05 Suppose z is a large real number. Consider the interval Z = [z — 50,z + 50). (a) Estimate the
number of primes congruent to 1 mod 10 in the interval Z using the fact that 0.1 () ~ t/(4(10)In(t)) as
t — oo. (b) Estimate the probability that a “random” integer in Z is a prime congruent to 1 mod 10. For
x = 107, calculate this estimate explicitly, and compare to 1/(4(10)In(z)). (c) Find all primes congruent
to 1 mod 10 in Z. (You could create a table in Mathematica and use the PrimeQ command, for example.)

18.5.01 Provide a primality certificate for N = 1000000009. (Hint: the only primes dividing
N —1=1000000008 less than B = 100 are 2, 3, and 7.)

18.5.02 Provide a primality certificate for N = 1000000021. (Hint: using B=30 suffices.)

Chapter 19
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19.2.01 Given that 100 is a square root of b = 4 modulo 833, find a proper factor of 833 by hand.
19.2.02 Factor 105 by hand. Use Sun Ze’s Theorem to find all square roots of b = 4 modulo 105.
19.2.03 Factor 525 by hand. Use Sun Ze’s Theorem to find all square roots of b = 16 modulo 525.

19.2.04 Given that x =4642, y = 5371, z = 8176 are square roots of b = 188 modulo n = 10013, find a
proper factor of n by hand.

19.1.01 Use Gaussian elimination to find a dependency relation among the vectors v; = (1,2),
vg = (1,0), v3 = (3,2) in R%

19.1.02 Use Gaussian elimination to find a dependency relation among the vectors v; = (0, 1,1, 0),
ve = (1,0,0,1), v3 = (1,1,1,0), v4 = (1,0,1,0), and v5 = (0,1,0,1) in F3, where Fy = Z/2 is the finite field
with two elements.

19.3.01 Use Dixon’s Algorithm to factor (a) n = 3127 with factor base {2,3} and lucky choice a = 56,
and (b) n = 3149 with factor base {2, 3,5} and lucky choice a = 57.

19.3.02 Use Dixon’s Algorithm to factor n = 803 with factor base {2,3,5} and a; = 41, ay = 43, a3 = 51,
ay = 82, as follows. (a) Compute b; = a? %n for 1 < i < 4. Verify that each b; is 5-smooth, and write out
the prime factorization of each b; in the form b; = 2%1 - 3%2 . 5% (b) Compute the vectors

v; = (€51 %2, €0 %2, e;3%2) for each 1 <i < 4. (c) Use Gaussian elimination to find coefficients

€1, ¢2,¢3,¢q4 € Fy in a dependency relation cijv; + cavg + c3vz + cavg = 0. (d) Compute z = ai* a3? a5® ay’
and let y be the square root (in Z) of b]* b52 b5? by*. (This is a perfect square, as you can see by looking at
the exponents of the prime factors.) (e) Compute ged(z £ y,n) to find proper factors of n.

19.3.03 Use Dixon’s Algorithm to factor n = 923 with factor base {2, 3,5} and a; = 44, as = 46, a3 = 53,
ay = 57. (Follow the outline given in the previous problem.)

19.4.01 Let n=2773. (a) Find m = floor(y/n). (b) For all a the range m + 1 < a < 2m, find

b= a?%n, and find the prime factorization of b. (You may find the Mathematica commands Table,
TableForm, and FactorInteger helpful, though you're certainly welcome to use other commands or even
other programing languages.) (c) How many of the b’s found in the previous part are smooth with respect
to the factor base {2,3}? with respect to {2,3,5}? {2,3,5,7}7 {2,3,5,7,11}? (d) What factor base is an
appropriate size to guarantee that, using the values from (b), we will be able to find a dependency relation
among the exponent-reduced-mod-2 vectors? (e) Construct three pairs (z,y) such that 2% = y? mod n
but x # £y mod n, given the values for a and b you have found.

19.4.02 Let n =4343. (a) Find m = floor(y/n). (b) For all a the range m + 1 < a < m + 40, find

b= a? %n, and find the prime factorization of b. (c) How large a factor base is needed to find five b’s that
are smooth with respect to that factor base? Is the factor base small enough to ensure that a dependency
relation must exist among the exponent-reduced-mod-2 vectors? (d) If we extend the range to

m+1 < a < 2m, how many b’s are there that are smooth with respect to the factor base you found in the
previous part? (e) Construct two pairs (x,%) such that 22 = y? mod n but z # 4y mod n, given the
values for a and b you have found.

19.4.03 Let n =2881. (a) Find m = floor(y/n). (b) For all a the range m + 1 < a < 2m, find
b= a?%n, and find the prime factorization of b. (c) On what attempt do we “get lucky” and find a b
that is a perfect square in Z? (d) How many attempts are needed to generate a list of (¢ + 1) b values
that are p; smooth? (You need to specify an appropriate factor base {2,3,...,p;} to answer this.)

19.5.01 Let n =4343. (a) Find the first 10 continued fractions rational approximations r; = p;/q; for
v/, as outlined in the reading questions for 19.5. (b) Construct a list of pairs (a,b) with (potential)
values for a being the numerators p; of the rational approximations r; found in (a) and (potential) values
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for b being given by p? — ¢?n. (Note that this guarantees that b = a® mod n.) Keep only those pairs (a, b)
for which b is smooth with respect to the factor basis {—1,2,5,...,17}. (c¢) How many pairs do you have?
Compare this to the number of such pairs you found in ten attempts in 19.4.02.



