Algebraic elements and algebraic extensions:

- We say that $z = i \in \mathbb{C}$ is algebraic over \mathbb{R} since it is the root of a nonzero polynomial, namely $x^2 + 1$, in $\mathbb{R}[x]$.
- We say that $z = \sqrt{2} \in \mathbb{R}$ is algebraic over \mathbb{Q} since it is the root of a nonzero polynomial, namely $x^2 2$, in $\mathbb{Q}[x]$.
- Any n^{th} root of unity is algebraic over \mathbb{Q} since is a root of $x^n 1$, which is nonzero in $\mathbb{Q}[x]$.
- The extension \mathbb{C}/\mathbb{R} is algebraic, since every element of \mathbb{C} is the root of a nonzero polynomial in $\mathbb{R}[x]$. (If a + bi is a complex number, then it is a root of the polynomial $x^2 - 2a + (a^2 + b^2)$ which has real coefficients; check this!)
- The extension \mathbb{R}/\mathbb{Q} is not algebraic, since there are elements in \mathbb{R} that are not roots of any nonzero polynomial in $\mathbb{Q}[x]$. (This is not obvious, but it is true. Examples of real numbers that are not roots of any polynomials in $\mathbb{Q}[x]$ are z = e and $z = \pi$.)
- We can consider \mathbb{F}_4 as a field extension of \mathbb{F}_2 if we identify [0] in \mathbb{F}_2 with $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ in \mathbb{F}_4 and [1] in \mathbb{F}_2 with $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ in \mathbb{F}_4 . The extension $\mathbb{F}_4/\mathbb{F}_2$ is algebraic because every element in \mathbb{F}_4 is the root of a nonzero polynomial in \mathbb{F}_2 . (Recall Exercise 6.35.)

Adjoining an element to a base field:

Note. Given a base field k, an extension field K/k, and an element $z \in K$, the field k(z) is defined as the intersection of all subfields of K containing k and z. This definition, while precise, is not very explicit. How does one find the intersection of all subfields of K containing z? In practice, we use Theorem 7.25 and Proposition 7.20 to provide an explicit description of k(z).

- We can adjoin the element z = i ∈ C to R to create the field R(i). This is defined to be the intersection of all subfields of C that contain all the real numbers as well as i. Theorem 7.25 says that R(i) ≃ R[x]/(x² + 1). We know from Theorem 7.11 that R[x]/(x² + 1) ≃ C; in fact R(i) = C.
- We can adjoin the element $z = \sqrt{2} \in \mathbb{R}$ to \mathbb{Q} to create the field $\mathbb{Q}(\sqrt{2})$. By definition, this is the intersection of all subfields of \mathbb{R} that contain the rational numbers as well as $\sqrt{2}$. Theorem 7.25 says that $\mathbb{Q}(\sqrt{2}) \cong \mathbb{Q}[x]/(x^2 2)$, since $x^2 2$ is the unique monic irreducible polynomial in $\mathbb{Q}[x]$ that has $\sqrt{2}$ as a root. Thus, by Proposition 7.20, $\mathbb{Q}(\sqrt{2})$ is a two-dimensional vector space over \mathbb{Q} ; in particular $\mathbb{Q}(\sqrt{2}) = \{r + s\sqrt{2} : r, s \in \mathbb{Q}\}$.
- A similar discussion shows that $\mathbb{Q}(i) = \{r + si : r, s \in \mathbb{Q}\}$ and $\mathbb{Q}(\omega) = \{r + s\omega : r, s \in \mathbb{Q}\}.$
- The field $\mathbb{Q}(\sqrt[3]{5})$ is a 3-dimensional vector space over \mathbb{Q} since the unique monic irreducible polynomial in $\mathbb{Q}[x]$ having $\sqrt[3]{5}$ as a root is $x^3 5$. Explicitly $\mathbb{Q}(\sqrt[3]{5}) = \{r + s\sqrt[3]{5} + t(\sqrt[3]{5})^2 : r, s, t \in \mathbb{Q}\}.$

Minimal polynomial

Let K/k be a field extension and $z \in K$ be algebraic over k. The unique monic irreducible polynomial in k[x] having z as a root is called the minimal polynomial of z. (We know that such a polynomial exists, because it is the unique monic generator of the kernel of the homomorphism $k[x] \to K$ given by $f \mapsto f(z)$.)

- The minimal polynomial of i over \mathbb{R} is $x^2 + 1$, since it is the unique monic irreducible polynomial in $\mathbb{R}[x]$ having i as a root.
- The polynomial $x^3 3x^2 + x 3$ has *i* as a root. (Check it!) By Proposition 7.20(iii) and the definition of minimal polynomial, $x^2 + 1$ must divide $x^3 3x^2 + x 3$. Polynomial long division yields $x^3 3x^2 + x 3 = (x 3)(x^2 + 1)$.

- The minimal polynomial of *i* over \mathbb{C} is x i. Note that $x^2 + 1$ is not irreducible in $\mathbb{C}[x]$; it factors as $x^2 + 1 = (x i)(x + i)$.
- The minimal polynomial of $\sqrt{2}$ over \mathbb{Q} is $x^2 2$.
- The minimal polynomial of $\sqrt{2}$ over \mathbb{R} is $x \sqrt{2}$.

It is worth restating Proposition 7.20(iii)(v) and Corollary 7.21 using the term minimal polynomial. Let K/k be a field extension and let $z \in K$ be algebraic over k.

- The minimal polynomial of z over k is a divisor of every polynomial in k[x] that has z as a root. (Proposition 7.20(iii))
- The degree of the field extension K/k is the degree of the minimal polynomial of z over k. (Proposition 7.20(v) and Corollary 7.21.)

Adjoining an element to a base field, revisited

It is worth stating how Proposition 7.20(v) and Theorem 7.25 work together to give an explicit description of k(z). Let K/k be an extension field and $z \in K$ be algebraic over k. Let p(x) be the minimal polynomial of z over k and d be the degree of p(x). Then k(z) is a d-dimensional vector space over k; explicitly:

$$k(z) = \{a_0 + a_1 z + \dots + a_{d-1} z^{d-1} : a_i \in k \text{ for } 0 \le i \le d-1\}$$

This generalizes the examples discussed above:

$$\mathbb{R}(i) = \{a + bi : a, b \in \mathbb{R}\} = \mathbb{C}$$
$$\mathbb{Q}(\sqrt{2}) = \{r + s\sqrt{2} : r, s \in \mathbb{Q}\}$$
$$\mathbb{Q}(i) = \{r + si : r, s \in \mathbb{Q}\}$$
$$\mathbb{Q}(\omega) = \{r + s\omega : r, s \in \mathbb{Q}\}$$
$$\mathbb{Q}(\sqrt[3]{5}) = \{r + s\sqrt[3]{5} + t(\sqrt[3]{5})^2 : r, s, t \in \mathbb{Q}\}$$