
Math 341, Unit 3, Corrections and Modifications for Students

Section 6.2

Proposition 6.55 Though called a proposition when stated, it is called a theorem when referenced. See,
for example, the three references to “Theorem 6.55” in the paragraphs following the proof.

Figure 6.1 The cyclotomic polynomials Φ5, Φ7, and Φ11 are all missing their linear terms, as is clear
from looking at Proposition 6.62.

Extra 6.2 Exercise 1. Show that the following polynomials are irreducible in Q[x]: (a) x3 + 5x2 + 21
(Hint: Use Proposition 6.51 and Theorem 6.55.) (b) x4 + 7x3 + 11x2 − 3x− 105 (Hint: Use Theorem 6.55
and Example 6.56.) (c) x3 + 7x2 + 5x+ 28 (Hint: Use Theorem 6.55 and Example 6.57.)

Extra 6.2 Exercise 2. Fill in the details of Example 6.61 for n = 1, 2, 3, 4, 6, 12, as follows. For n = 1,
we define Φ1(x) = x− 1. (No computation necessary.) For n > 1, we define Φn(x) in terms of Φd(x), where
d ranges over proper divisors of n. In particular, for n = 2, the only proper divisor is d = 1, so
Φ2(x) = (x2 − 1)/Φ1(x) = (x2 − 1)/(x− 1). Similarly for n = 3, Φ3(x) = (x3 − 1)/(x− 1). For n = 4, we
now have two proper divisors, d = 1, 2, so we need to divide x4 − 1 by Φ1(x) and Φ2(x)) to get Φ4(x). For
n = 6, the proper divisors are 1, 2, 3, so we divide x6 − 1 by Φ1(x), Φ2(x), and Φ3(x) to get Φ6(x), and for
n = 12, we divide x12 − 1 by Φ1(x), Φ2(x), Φ3(x), Φ4(x), and Φ6(x). Compute each of these Φn(x),
n = 2, 3, 4, 6, 12, using long division of polynomials.

Exercise 6.50 The definition of a squarefree integer is given on page 34.

Section 7.1

Exercise 7.12 Imitate the proof of Theorem 7.11, making sure to look up all references and references of
references. Consider the map ϕ : Q[x]→ C given by ϕ(f) = f(ω). Show (1) ϕ is a homomorphism, (2)
kerϕ is the ideal generated by the polynomial x2 + x+ 1. (Two inclusions to show here!), and (3)
imϕ = Q[ω]. The use the First Isomorphism Theorem.

Section 7.2

Example 7.28 At the end of the second paragraph, the cyclotomic polynomial Φ7 is missing its linear
term. It should be Φ7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1.

Exercise 7.30 Hint: Look back at Exercise 3.15 and Exercise 7.22.

Exercise 7.36 The end of the hint should say, “. . . the polynomial p may factor in F [x].”

Theorem 7.38 There are three issues with this proof. (1) To show that g′(x) = −1 in K[x], we need to
show that in K, 1 + · · ·+ 1 (q times) is zero. This is not stated explicitly in Proposition 7.17, but is a
consequence of Proposition 7.17(i). (2) To prove that E is a subring of K, it is necessary to show that
1 ∈ E, that E is closed under subtraction, and that E is closed under multiplication. (See correction of
Proposition 4.46 on the Unit 2 Corrections and Modifications.) (3) To prove that E is a subfield of K, it is
necessary to show that for every nonzero a ∈ E, the multiplicative inverse of a in K, namely a−1, also lies
in E. This is straightforward and does not rely on Lemma 7.37 (nor is is appropriate to invoke Lemma
7.37, since Lemma 3.37 presumes that we are working in a field with q elements!) See the online notes for
an outline of a correct proof.

Example 7.41 The third sentence should begin, “By Proposition 7.20, K consists of . . . ”.

Exercise 7.39 Modify to say, “Let f(x), g(x) ∈ k[x] be nonconstant monic polynomials, where k is a
field. Show that, if g is irreducible and every root of f (in an appropriate splitting field) is also a root of g,
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then f = gm for some integer m ≥ 1. Hint: Use strong induction on deg(f).” (Not deg(h).) Additional
Hint: For strong induction, first prove base case: i.e. that the claim is true if deg(f) = 1. For the inductive
step, suppose that the claim is true for every polynomial p of degree strictly less than the degree of f , and
show that the claim is true for f . (To be explicit, the inductive hypothesis is: Given a nonconstant monic
polynomial p(x) ∈ k[x] with deg(p) < deg(f) and such that every root of p is a root of g, there is an integer
m ≥ 1 such that p = gm.)

Section 8.1

Exercise 8.1 Hint: Disprove the statement by providing a counterexample. Salvage the statement by
proving one of the implications (either the “if” or the “only if” direction.)

Section 8.2

Lemma 8.10 In this lemma p = 2 or 3; it is not an arbitrary prime. So the result is true for Z[i] and Z[ω],
but not for arbitrary rings of cyclotomic integers.

Example 8.12 The second step of the Euclidean algorithm should be:

z = (3− i)(−10 + 15i) + (−4− 7i)

The text has (3 + 3i) instead of z, but this is a mistake.

Exercise 8.8 This exercise references Example 8.12, which has an error, as discussed above.

Section 8.3

Proposition 8.38 There is an unmatched parentheses in the third sentence.

Proposition 8.42 The first sentence of the second paragraph of the proof should say, “It remains to
settle the case where λ 6 | yz . . . ”.

Section 8.4

Example 8.52 The very last equation in this example should read 2r − 4t+ 10s = 1.

Exercise 8.47 Perhaps it could be modified as follows, “Referring to Example 8.52, (i) the ideal
generated by the norms of generators of J1 is an ideal in Z, and hence principal. Find a generator for it.
(ii) Do the same for the other ideals J2, J3, and J4.”

Exercise 8.48 There is a sign error. The equality should read: “2 · 3 = (1 +
√
−5)(1−

√
−5)”.


