
Math 341, The Complex Numbers, Gaussian Integers, and Eisenstein Integers

We review the algebraic structure and the geometry of complex numbers and introduce two notable
subrings: the Gaussian integers and the Eisenstein integers. See Chapter 3, especially Section 3.2 and the
following parts of Section 3.4: from the subsection, “Norms,” pages 116-117 (up to and including
Proposition 3.35), from the subsection “Gaussian Integers, Pythagorean Triples Revisited,” page 119 (up to
and including Proposition 3.37), and from the subsection “Eisenstein Integers,” pages 120-121 (up to and
including Proposition 3.38).

1. The Algebraic Structure of the Complex Numbers

Informally, the complex numbers may be presented as the set of all “numbers” of the form x+ iy, where x
and y are real numbers and i is an “imaginary” number with the property that i2 = −1. (Since 02 = 0 and
every negative or positive real number has a positive square, it is clear that this “number,” i, if it exists,
cannot be a real number.)

Taking the existence of this “number” i for granted, and proceeding optimistically (namely, assuming that
the rules of arithmetic for real numbers also apply to complex numbers), we may derive rules for the
addition and multiplication of complex numbers:

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2) ,

[(x1 + iy1) · (x2 + iy2) = x1x2 + iy1x2 + ix1y2 + (−1)y1y2 = (x1x2 − y1y2) + i(x1y2 + y1x2) .

A more formal development of the complex numbers defines the set of complex numbers, C, as the set of
ordered pairs of real numbers:

C = {(x, y) | x, y ∈ R} = R2 .

Addition is defined component-wise (as for 2-dimensional vectors over R), and multiplication is defined in
order to match the formula above, suggested by intuition:

(x1, y1) · (x2, y2) = (x1x2 − y1y2, x1y2 + y1x2) .

If we define i to be the complex number (0, 1), then we can prove that i2 = −1, and we can use the more
intuitive notation x+ iy instead of (x, y). Given these definitions, it is not difficult (though somewhat
tedious) to prove that C is a real vector space and a commutative ring. See Propositions 3.8 and 3.9 pages
93-95.

It takes a little more work to prove the field axiom: the existence of multiplicative inverses for nonzero
elements. The simplest route is via the complex conjugate: for z = x+ iy ∈ C, we define its complex
conjugate z by:

z = x− iy .

See Proposition 3.10, page 96, for several useful properties of the complex conjugate. Given a nonzero
complex number z, we prove that its multiplicative inverse is:

z−1 =
z

zz
.

Notice that the denominator is a real scalar, which is the square of the magnitude of z. See Proposition
3.11, page 96.

Thus C is a real vector space and a field.
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2. The Geometry of the Complex Numbers

We visualize the complex numbers in a coordinate plane, where the horizontal axis is the “real axis” and
the vertical axis is the “imaginary axis.” A complex number x+ iy is located at the point (x, y). Since
addition of complex numbers is defined componentwise, the same way that addition of 2-dimensional
vectors over R is defined, we may add of complex numbers geometrically using the parallelogram law (or
the head-to-tail rule); see Figure 3.2 in page 93.

The geometry of multiplication is most simply understood once the complex numbers are put in polar
form. The modulus of a complex number z = x+ iy is its magnitude as a vector:

|z| =
√
zz =

√
x2 + y2 .

The argument of a complex number is an angle, measured counter-clockwise from the positive real axis to
the ray from the origin to z. Letting r be the modulus of z and θ the argument. Then we may write z in
polar form as follows:

z = r(cos θ + i sin θ) .

A more concise notation is exponential polar form:

z = reiθ .

Given two complex numbers z1 = r1e
iθ1 and z2 = r2e

iθ2 , their product is

z1z2 = (r1r2)ei(θ1+θ2) .

In words, to multiply complex numbers we multiply moduli and add arguments. (See Theorem 3.18.)

For example, if z1 is a distance of 3 from the origin and z2 is a distance of 4 from the origin, then z1z2 is a
distance of 12 from the origin. And if z1 is on a ray 30◦ counterclockwise from the positive real axis and z2
is on a ray 45◦ counterclockwise from the positive real axis, then z1z2 is on a ray 75◦ counterclockwise from
the positive real axis.

In particular, if a complex number u lies on the unit circle (i.e. |u| = 1) and if z is any nonzero complex
number, then uz is obtained from z by a rotation by an angle equal to the argument of u.

3. The Norm, the Gaussian Integers and the Eisenstein Integers

The norm of a complex number z is simply the square of its modulus:

N(z) = |z|2 = zz .

The norm has several nice properties; see Proposition 3.35, page 117.

The Gaussian integers, denoted Z[i], are complex numbers whose real and imaginary parts are integers:

Z[i] = {a+ bi | a, b ∈ Z} .

Geometrically, they form a square lattice in the complex plane.

It is not difficult to check that Z[i] is a subring of C.

The Eisenstein integers, denoted in this text by Z[ω], are:

Z[ω] = {a+ bω | a, b ∈ Z} , where ω = 1
2 (−1 +

√
3 i) .

The complex number ω is called a cube root of unity, since ω3 = 1, as can be verified directly. Note that
this means ω is a root of the polynomial x3 − 1, which factors as (x− 1)(x2 + x+ 1). The two complex
roots are ω and ω, as can be verified using the quadratic formula. It is not difficult to check that:

ω = 1
2 (−1−

√
3 i) = ω−1 = ω2 = −1− ω .

Geometrically, the Eisenstein integers form a triangular lattice in the complex plane.

2


