A commutative ring is a set R with two binary operations, called addition,

$$+: R \times R \to R$$
, denoted by $(a, b) \mapsto a + b$,

and multiplication,

$$\cdot : R \times R \to R$$
, denoted by $(a, b) \mapsto a \cdot b$ or ab ,

satisfying the following eight properties:

(i) Commutativity of Addition:

For every $a, b \in R$, a + b = b + a.

(ii) Existence of Additive Identity:

There is an element of R, denoted 0 (or 0_R to distinguish from the integer 0), and called the **zero element** (or additive identity) of R, with the property: a + 0 = a, for any $a \in R$.

(iii) Existence of Additive Inverses:

For every $a \in R$, there is an element, denoted -a, and called the **negative** (or additive inverse) of a, such that -a + a = 0.

(iv) Associativity of Addition:

For all
$$a, b, c \in R$$
, $a + (b + c) = (a + b) + c$.

(v) Commutativity of Multiplication:

For all
$$a, b \in R$$
, $ab = ba$.

(vi) Existence of Multiplicative Identity:

There exists an element in R, denoted 1 (or 1_R to distinguish from the integer 1), and called the (multiplicative) **identity** of R, with the property that $1 \cdot a = a$ for all $a \in R$.

(vii) Associativity of Multiplication:

For all
$$a, b, c \in R$$
, $a(bc) = (ab)c$.

(viii) Distributivity:

For all
$$a, b, c \in R$$
, $a(b+c) = ab + ac$.