A commutative ring is a set R with two binary operations, called addition, $$+: R \times R \to R$$, denoted by $(a, b) \mapsto a + b$, and multiplication, $$\cdot : R \times R \to R$$, denoted by $(a, b) \mapsto a \cdot b$ or ab , satisfying the following eight properties: ## (i) Commutativity of Addition: For every $a, b \in R$, a + b = b + a. #### (ii) Existence of Additive Identity: There is an element of R, denoted 0 (or 0_R to distinguish from the integer 0), and called the **zero element** (or additive identity) of R, with the property: a + 0 = a, for any $a \in R$. ### (iii) Existence of Additive Inverses: For every $a \in R$, there is an element, denoted -a, and called the **negative** (or additive inverse) of a, such that -a + a = 0. ### (iv) Associativity of Addition: For all $$a, b, c \in R$$, $a + (b + c) = (a + b) + c$. ## (v) Commutativity of Multiplication: For all $$a, b \in R$$, $ab = ba$. #### (vi) Existence of Multiplicative Identity: There exists an element in R, denoted 1 (or 1_R to distinguish from the integer 1), and called the (multiplicative) **identity** of R, with the property that $1 \cdot a = a$ for all $a \in R$. # (vii) Associativity of Multiplication: For all $$a, b, c \in R$$, $a(bc) = (ab)c$. ### (viii) Distributivity: For all $$a, b, c \in R$$, $a(b+c) = ab + ac$.