
Math 341, 7.2-II Field Theory: Algebraic Extensions, Examples

Algebraic elements and algebraic extensions:

• We say that z = i ∈ C is algebraic over R since it is the root of a nonzero polynomial, namely x2 + 1,
in R[x].

• We say that z =
√

2 ∈ R is algebraic over Q since it is the root of a nonzero polynomial, namely
x2 − 2, in Q[x].

• Any nth root of unity is algebraic over Q since is is a root of xn − 1, which is nonzero in Q[x].

• The extension C/R is algebraic, since every element of C is the root of a nonzero polynomial in R[x].
(If a+ bi is a complex number, then it is a root of the polynomial x2 − 2a+ (a2 + b2) which has real
coefficients; check this!)

• The extension R/Q is not algebraic, since there are elements in R that are not roots of any nonzero
polynomial in Q[x]. (This is not obvious, but it is true. Examples of real numbers that are not roots
of any polynomials in Q[x] are z = e and z = π.)

• We can consider F4 as a field extension of F2 if we identify [0] in F2 with ( 0 0
0 0 ) in F4 and [1] in F2

with ( 1 0
0 1 ) in F4. The extension F4/F2 is algebraic because every element in F4 is the root of a

nonzero polynomial in F2. (Recall Exercise 6.35.)

Adjoining an element to a base field:

Note. Given a base field k, an extension field K/k, and an element z ∈ K, the field k(z) is defined as the
intersection of all subfields of K containing k and z. This definition, while precise, is not very explicit.
How does one find the intersection of all subfields of K containing z? In practice, we use Theorem 7.25 and
Proposition 7.20 to provide an explicit description of k(z).

• We can adjoin the element z = i ∈ C to R to create the field R(i). This is defined to be the
intersection of all subfields of C that contain all the real numbers as well as i. Theorem 7.25 says that
R(i) ∼= R[x]/(x2 + 1). We know from Theorem 7.11 that R[x]/(x2 + 1) ∼= C; in fact R(i) = C.

• We can adjoin the element z =
√

2 ∈ R to Q to create the field Q(
√

2). By definition, this is the
intersection of all subfields of R that contain the rational numbers as well as

√
2. Theorem 7.25 says

that Q(
√

2) ∼= Q[x]/(x2 − 2), since x2 − 2 is the unique monic irreducible polynomial in Q[x] that has√
2 as a root. Thus, by Proposition 7.20, Q(

√
2) is a two-dimensional vector space over Q; in

particular Q(
√

2) = {r + s
√

2 : r, s ∈ Q}.

• A similar discussion shows that Q(i) = {r + si : r, s ∈ Q} and Q(ω) = {r + sω : r, s ∈ Q}.

• The field Q( 3
√

5) is a 3-dimensional vector space over Q since the unique monic irreducible polynomial
in Q[x] having 3

√
5 as a root is x3 − 5. Explicitly Q( 3

√
5) = {r + s 3

√
5 + t( 3

√
5)2 : r, s, t ∈ Q}.

Minimal polynomial

Let K/k be a field extension and z ∈ K be algebraic over k. The unique monic irreducible polynomial in
k[x] having z as a root is called the minimal polynomial of z. (We know that such a polynomial exists,
because it is the unique monic generator of the kernel of the homomorphism k[x]→ K given by f 7→ f(z).)

• The minimal polynomial of i over R is x2 + 1, since it is the unique monic irreducible polynomial in
R[x] having i as a root.

• The polynomial x3 − 3x2 + x− 3 has i as a root. (Check it!) By Proposition 7.20(iii) and the
definition of minimal polynomial, x2 + 1 must divide x3 − 3x2 + x− 3. Polynomial long division
yields x3 − 3x2 + x− 3 = (x− 3)(x2 + 1).
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• The minimal polynomial of i over C is x− i. Note that x2 + 1 is not irreducible in C[x]; it factors as
x2 + 1 = (x− i)(x+ i).

• The minimal polynomial of
√

2 over Q is x2 − 2.

• The minimal polynomial of
√

2 over R is x−
√

2.

It is worth restating Proposition 7.20(iii)(v) and Corollary 7.21 using the term minimal polynomial. Let
K/k be a field extension and let z ∈ K be algebraic over k.

• The minimal polynomial of z over k is a divisor of every polynomial in k[x] that has z as a root.
(Proposition 7.20(iii))

• The degree of the field extension K/k is the degree of the minimal polynomial of z over k.
(Proposition 7.20(v) and Corollary 7.21.)

Adjoining an element to a base field, revisited

It is worth stating how Proposition 7.20(v) and Theorem 7.25 work together to give an explicit description
of k(z). Let K/k be an extension field and z ∈ K be algebraic over k. Let p(x) be the minimal polynomial
of z over k and d be the degree of p(x). Then k(z) is a d-dimensional vector space over k; explicitly:

k(z) = {a0 + a1z + · · ·+ ad−1z
d−1 : ai ∈ k for 0 ≤ i ≤ d− 1}

This generalizes the examples discussed above:

R(i) = {a+ bi : a, b ∈ R} = C

Q(
√

2) = {r + s
√

2 : r, s ∈ Q}

Q(i) = {r + si : r, s ∈ Q}

Q(ω) = {r + sω : r, s ∈ Q}

Q(
3
√

5) = {r + s
3
√

5 + t(
3
√

5)2 : r, s, t ∈ Q}
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