
Math 301, Galois’ Theorem on the Existence of Finite Fields of Every Prime Power Order

Recall some facts about finite fields.

• For any prime p, Zp is a field with p elements, which we denote Fp.

• Not every finite field has a prime number of elements; for example, we have encountered a finite field
with four elements, F4, in Exercise 4.55.

• However, the number of elements in a finite field must be a power of a prime. See Proposition 7.18.

Definition. The order of a finite field is the number of elements in the field; it is denoted various ways,
e.g. if K is a finite field, its order may be denoted |K| or #K.

Galois’ Theorem asserts the existence of finite fields of every prime power order.

Before proving the theorem, we recall a few more results.

• Every finite field is a field extension of some Fp, where p is a prime, by Proposition 7.15.

• In a field of order q = pn (where p is prime), every nonzero element a satisfies aq−1 = 1, by Lemma
7.37. This means that every element a of the field (zero and nonzero) satisfies the equation
aq − a = 0. (Check this for yourself.)

Thus to prove the existence of a field with precisely q elements (where q is a prime power, pn), our strategy
is to construct a field extension of Fp over which the polynomial xq − x splits, and to prove that the set of
roots of xq − x in this field extension is itself a field, with exactly q elements.

Theorem (Galois). Let p be a prime, and n a positive integer. Then there is a field of order pn.

Outline of proof. Let q = pn, where p and n are as in the statement of the theorem. Consider the
polynomial g(x) = xq − x in Fp[x].

By Kronecker’s Theorem, there is a field extension K of Fp over which xq − x splits.

Let E be the set of roots of xq − x in K. (This E will be a field with exactly q elements. To prove this, we
need to show that E contains exactly q elements and that E is a field.)

To show that E contains exactly q elements, we show that all of the roots of xq − x are distinct, as follows.
(Why does this suffice? See the Factor Theorem (Corollary 6.15) and Theorem 6.16 on page 240.)

We will use the fact that a polynomial that splits over a field K has no repeated roots (i.e. all its roots are
distinct) if it is relatively prime to its formal derivative. (See Exercise 6.40(i), on page 263, which in turn
relies on the definition of the formal derivative of a polynomial, given in Exercise 5.15, on page 202.)

The formal derivative of g(x) = xq − x is g′(x) = q xq−1 − 1.

This notation is somewhat misleading, since the coefficients of g′(x) are elements of K, not integers. To be
more clear, we might write:

g′(x) = (q 1K)xq−1 + 1K ,

where q 1K = 1K + 1K + · · ·+ 1K (q times), and 1K is the multiplicative identity in K. Since q = pn, a
small corollary (see below) of Proposition 7.17(i) implies that q 1K = 0K . (Having clarified this, we no
longer write the subscript “K” on 0 or 1.)

Therefore g′(x) = qxq−1 − 1 = −1 in K[x], and gcd(g, g′) = 1 in K[x], so all the roots of g(x) = xq − x are
distinct. As discussed above, this implies that E has precisely q elements.
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Next we show that E is a field, by showing that it is a subring of K (and thus a commutative ring in its
own right) and that the multiplicative inverse (in K) of every nonzero element in E lies in E. (See
Proposition 4.48.)

To show E is a subring of K, we show that 1 ∈ E, and that E is closed under subtraction and
multiplication.

Note that for an element a of K to be in E means that aq = a. (Why? Prove this yourself.) It is
straightforward to show that 1 ∈ E and that E is closed under multiplication. (Prove these yourself.)

We show that E is closed under subtraction as follows. Take a, b ∈ E; then aq = a and bq = b. By
Proposition 7.17(ii), (a− b)q = (a + (−b))q = aq + (−b)q. If q is odd, then (−b)q = −bq, so
(a− b)q = aq − bq = a− b, which implies a− b ∈ E. If q is even, (−b)q = bq, but since q is a power of a
prime, we must have q = 2n and Fp = F2. Thus −1 = 1, and (−b)q = bq = −bq, implying, as argued above,
that (a− b)q = a− b and a− b ∈ E.

To prove that E is a subfield of K, it is necessary to show that for every nonzero a ∈ E, the multiplicative
inverse of a in K, namely a−1, also lies in E. Let a 6= 0 be in E. Then aq = a, and, since E is a subring of
K, it is a domain, and we may cancel to obtain aq−1 = 1. Since q ≥ 2, we have a · aq−2 = 1 in K, i.e.
a−1 = aq−2 in K. Since E is closed under multiplication and a ∈ E, we have aq−2 ∈ E, and thus a−1 ∈ E.

Thus E is a field with precisely q = pn elements, proving the existence of such a field.

In the proof above, we needed this small consequence of Proposition 7.17(i).

Corollary (of Proposition 7.17(i)). Let k be a field of characteristic p > 0, and let q = pn for some
positive integer n. Then qa = 0 for all a ∈ k.

The proof is left to you as an exercise. Hint: prove that pna = pn−1a + · · ·+ pn−1a (p times).

Note. Moore’s Theorem (Corollary 7.40) says that any two finite fields with the same number of elements
are isomorphic. Thus it is usual to refer to the finite field with q = pn elements, since there is only one such
field (up to isomorphism), and to denote it as Fq, without any concern of ambiguity. Recall Exercises 4.55
on page 165 and 6.35 on page 263, and see Example 7.41.
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