
Math 341, Subring Criterion

Definition. A subring of a commutative ring R is a subset S of R that is a ring in its own right, with the
addition and multiplication on S being the same as the addition and multiplication on R and with the
multiplicative identity element in S being the same as the multiplicative identity element in R.

Note. If S is a subring of a commutative ring R, then the additive identity in S is the same as the additive
identity in R. This follows from the following proposition; see the note after the proof of the proposition.

Proposition (Subring Criterion). A subset S of a commutative ring R is a subring of R if and only if all
of the following conditions are met:

(i) 1R ∈ S, where 1R denotes the multiplicative identity in R.

(ii) For all a, b ∈ S, a− b ∈ S.

(iii) For all a, b ∈ S, ab ∈ S.

Proof. Let R be a commutative ring, and let S be a subset of R.

First we show that if S is a subring of R then the three conditions are met.

Suppose S is a subring of R. Then it has a multiplicative identity, 1S , and by the definition of a subring,
1S = 1R, where 1R denotes the multiplicative identity in R. Thus 1R ∈ S, proving (i).

Now let a, b ∈ S. Since S is a commutative ring there is a binary operation + : S × S → S, and since S is a
subring of R, this addition agrees with the addition defined on R. In particular, this means that S is closed
under addition. Further, there is an additive inverse for b in S, since S is a ring, and since additive inverses
are unique in R, it is the same as −b in R. Thus a− b = a + (−b) ∈ S, proving (ii).

Similarly, there is a binary operation × : S × S → S that agrees with the multiplication defined on R. Thus
S is closed under multiplication, proving (iii).

Next we show that if S satisfies the three enumerated conditions, then it is a subring of R.

To show that S is a subring of R, we need to show that S is a commutiative ring in its own right, with the
addition and multiplication on S being defined as the addition and multiplication on R.

By (i), S is nonempty, since 1R ∈ S. We need to show that the addition and multiplication from R give rise
to binary operations on S. Certainly addition and multiplication are functions on S × S; we only need to
show that the target for each is S, i.e. that S is closed under the addition and multiplication coming from
R. Condition (iii) is closure under multiplication. We will prove closure under addition after proving the
two existence axioms for addition.

Existence of additive identity: Since S is nonempty, we may take a ∈ S. By (ii), a− a ∈ S. Thus 0R ∈ S,
since a− a = 0R. We claim that 0R is an additive identity for S. For any s ∈ S, 0R + s = s, since s ∈ R
and since 0R is the additive identity in R. Thus 0R is an additive identity for S. Since 0R is an additive
identity for S as well as R, we now denote it simply as 0.

Existence of additive inverses: Take any a ∈ S. Then, by (ii) 0− a ∈ S. But 0− a = 0 + (−a), where −a is
the additive inverse of a in R. Thus we have shown −a ∈ S. Clearly, a + (−a) = 0, so −a is an additive
identity for a in S.

Closure under addition: Take any a, b ∈ S. Then −b ∈ S, and −(−b) = b, since if −b is an additive inverse
for b, then b is an additive inverse for −b. Thus, a + b = a− (−b) ∈ S by (ii).

Commutativity of addition: Take any a, b ∈ S. Then a + b ∈ S (by closure under addition) and, since
a, b ∈ R, we have a + b = b + a, by commutativity of addition in R.
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Associativity of addition: Take any a, b, c ∈ S. Then, since a, b, c ∈ R, a + (b + c) = (a + b) + c, and closure
ensures that these sums are in S.

Existence of multiplicative identity: Take any a ∈ S. Since 1R ∈ S, 1R · a ∈ S by (iii) and 1R · a = a, since
multiplication in S is the same as multiplication in R. Thus 1R is a multiplicative identity in S as well as
R. We now denoted it simply as 1.

Commutativity of multiplication: Take any a, b ∈ S. Then ab ∈ S, since S is closed under multiplication,
and, since a, b ∈ R, ab = ba, by commutativity of multiplication in R.

Associativity of multiplication: Take any a, b, c,∈ S. Since a, b, c ∈ R, a(bc) = (ab)c in R, and since S is
closed under multiplication a(bc) = (ab)c in S.

Distributivity: Take any a, b, c ∈ S. Since a, b, c ∈ R, a(b + c) = ab + ac in R, and since S is closed under
addition and multiplication, a(b + c) = ab + ac in S.

Note. We say that distributivity and commutativity and associativity of addition and multiplication are
inherited from R, because they follow readily from the fact that S ⊆ R.

Note. As mentioned above, the additive identity 0S in a subring S of a commutative ring R is the same as
the additive identity 0R in R. Indeed, since S is a subring of R, it is itself a ring and has an additive
identity 0S . By (i) and (ii) of the subring criterion, 1R ∈ S and also 0R = 1R − 1R ∈ S. Moreover 0R is an
additive identity for S, since, for any s ∈ S, the fact that S ⊆ R implies s ∈ R, and so 0R + s = s, by the
definition of 0R. By the uniqueness of the additive identity in a ring, 0R = 0S .


