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1. Overview

Definition of a Limit

We say “the limit of f(x) as x approaches a is L” if the following condition is satisfied:

For every number ε > 0 there is a number δ > 0 such that:

if |x− a| < δ then |f(x)− L| < ε

Parsing this definition

Our intuitive understanding is that L is the limit (of f(x) as x → a) if f(x) gets closer and closer
to L as x gets closer and closer to a. Let’s see how this matches up with the precise definition.
First look at the expression |x− a|. This is the distance between x and a. So if we make δ smaller
and smaller, that means that x is getting closer and closer to a. Similarly, |f(x)− L| is the
distance between the y-values f(x) and L, so if ε gets smaller and smaller, that means that f(x) is
getting closer and closer to L. So, just to make this clear: δ is a distance that specifies an x-range:
how far away from a can x be? ... it must be within δ units of a. We’ll call this x-range a
“δ-neighborhood” of a. And ε is a distance that specifies a y-range: how far away from L can f(x)
be? ... it will be within ε units of L. This y-range we’ll call an ε-neighborhood of L.

So when we say that:
if |x− a| < δ then |f(x)− L| < ε

that is like saying:

If x is close enough to a (namely in a δ-neighborhood of a) then f(x) is guaranteed to
be close to L (namely in an ε-neighborhood of L).

Ok, well then, what is the deal with the “for every ε > 0 there is a δ > 0” part? This means that
no matter how small you make the ε-neighborhood of L, you will always be able to find a
δ-neighborhood of a, that “works,” i.e. a δ-neighborhood small enough to guarantee that the
y-values of the graph of f are in the ε-neighborhood of L. The point is that we can get f(x)
infinitely close to L, by just making the δ-neighborhood of a smaller and smaller.

2. Example

Problem: Prove, using the ε-δ definition of limit that:

lim
x→1

5x− 3 = 2

Solution:

We need to show:

For any ε > 0, there is a δ > 0 such that:

if |x− 1| < δ then |(5x− 3)− 2| < ε



Before we write our proof, we need to do some thinking. (This is like the prewriting
you would do before writing a paper.) We treat ε like a fixed number. We want to
figure out what δ will work, given the ε we have. We start with the ε condition:

|(5x− 3)− 2| < ε

Simplifying, we get:
|5x− 5| < ε

We factor out a 5:
5 · |x− 1| < ε

So if we rewrite what we have to show, using the simplification we just did, we get:

For any ε > 0, there is a δ > 0 such that:

if |x− 1| < δ then 5 · |x− 1| < ε

Well, if |x− 1| < δ then 5 · |x− 1| < 5δ. So we just need to have 5δ ≤ ε. So we will
choose δ = ε

5 .

Now that we have figured out what δ will work, we need to go back and write up an
argument. (This is like writing a paper: we take the work we just did and arrange it
nicely to construct an argument.)

Proof:
Given any ε > 0, we can define δ = ε

5 . Then:

if|x− 1| < δ : then |x− 1| < ε

5
then 5 · |x− 1| < 5 · ε

5
then 5 · |x− 1| < ε

But 5 · |x− 1| = |(5x− 3)− 2|, so we have shown:

if |x− 1| < δ then |(5x− 3)− 2| < ε

So we have shown:

For any ε > 0, there is a δ > 0 such that:

if |x− 1| < δ then |(5x− 3)− 2| < ε

and we are done!
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