
2.8 The Derivative as a Function
Math 1271, TA: Amy DeCelles

1. Overview

Definition of Derivative: If we have a function f(x) we can define a new function, the derivative
of f to be:

f ′(x) = lim
h→0

f(x + h)− f(x)
h

provided this limit exists. This is the same expression we had for f ′(a) in the previous section.
The only difference is that in the previous section we thought about f ′(a) as a number (which was
determined by the number a), and now we’re thinking of f ′(x) as a function depending on x.

Notation: If y = f(x) the following expressions all mean the same thing:

f ′(x)
df

dx
(x)

d

dx
f(x) y′

dy

dx

Though some of these expressions look like fractions, don’t treat them like fractions.

Differentiability: We say that a function is differentiable at x = a if f ′(a) exists. How could
f ′(a) fail to exist? Well, f ′(a) could fail to exist if:

1. f is not continuous at a (hole, asymptote, or jump)

2. f has a cusp at a

3. f has a vertical tangent at a

Note: If f is differentiable at a then it is necessarily continuous at a, but not vice versa. (Draw
some pictures to convince yourself!)

Graphs: If you have the graph of a function f(x) you can sketch the graph of the derivative f ′(x).
Just think: slopes −→ y-values. Here are some tips:

1. Find the “flat places” on the graph of f(x), i.e. find all the x’s where the slope is zero. That
means that the y-value for f ′(x) will be zero at each of those x’s.

2. Find the discontinuities, cusps, and vertical tangents on the graph of f(x). Those are places
where f ′(x) will be undefined. In particular, cusps of f(x) translate into jump discontinuities
of f ′(x), and vertical tangents of f(x) translate into vertical asymptotes of f ′(x).

3. Intervals of increase and decrease: when f(x) is increasing that means that the slopes are
positive, so f ′(x) will have positive y-values. When f(x) is decreasing that means that the
slopes are negative, so f ′(x) will have negative y-values.

4. Estimate the slope at a few particular points. Pick some key x-values and estimate the slope
of f(x) at those places. Then plot those points on the graph of f ′(x).

2. Examples

1.) Consider g(x) = 1
x2 . Use the definition of the derivative to find g′(x).



We remember the definition of the derivative:

g′(x) = lim
h→0

g(x + h)− g(x)
h

= lim
h→0

1
(x+h)2 −

1
x2

h

Notice that if we plug in h = 0, we get “zero over zero”, so our goal is to cancel the h
in the denominator. In order to do that we will have to do some rearranging. First,
multiply numerator and denominator by x2(x + h)2 to get rid of the fractions in the
numerator:

g′(x) = lim
h→0

x2 − (x + h)2

h(x2)(x + h)2

Simplify the numerator:

g′(x) = lim
h→0

x2 − (x2 + 2hx + h2)
h(x2)(x + h)2

= lim
h→0

−2hx− h2

h(x2)(x + h)2

Now we can factor an h out of the numerator and cancel it with the h in the
denominator:

g′(x) = lim
h→0

−h(2x + h)
h(x2)(x + h)2

= lim
h→0

−(2x + h)
x2(x + h)2

Now we have eliminated the “zero over zero” problem. Now we can just plug in h = 0:

g′(x) =
−(2x + 0)
x2(x + 0)2

= −2x

x4
= − 2

x3

2.) Consider f(x) = x|x|. For what values is f differentiable?

This problem is a little tricky because it involves an absolute value. The absolute value
function is continuous for all real numbers, but it is not differentiable at zero (because
it has a corner!) The easiest way to deal with the absolute value function is to rewrite
it as a piecewise function:

|x| =

{
−x if x ≤ 0
x if x > 0

(If you are puzzling over this, try thinking of the graph.) So we can also rewrite the
function f(x) as a piecewise function.

f(x) = x|x| =

{
−x2 if x2 ≤ 0
x if x > 0

So on the left half plane, f(x) is an upside-down parabola, and on the right half-plane
f(x) is a right-side-up parabola.

We have to think about where this function is differentiable. Certainly f(x) is
differentiable for all x < 0, because it is just −x2 (a polynomial) on that interval.
Likewise, f(x) is differentiable for all x > 0, because it is just x2 on that interval. So we
just need to check the point x = 0. Remember that (by definition) f(x) is continuous
at 0 if and only if the limit defining f ′(0) (i.e. the limit of differnce quotients) exists.
So we check the left and right limits of the difference quotient. The left-hand limit is:

lim
h→0−

f(0 + h)− f(0)
h

= lim
h→0−

−h2 − 0
h

= lim
h→0−

−h = 0



The right-hand limit is:

lim
h→0+

f(0 + h)− f(0)
h

= lim
h→0+

h2 − 0
h

= lim
h→0−

h = 0

The left and right limits agree, so the limit defining f ′(0) exists, and f ′(x) is
differentiable at 0. Intuitively, this means that the slope from the left matches the slope
from the right, so there’s a smooth transition from the left piece (the upside-down
parabola) to the right piece (the right-side-up parabola.)
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