Name:	Section:
Names of collaborators:	

Main Points:

- 1. The accumulated net change function ("area-so-far" function)
- 2. Connection to antiderivative functions: the Fundamental Theorem of Calculus
- 3. Evaluating definite integrals using antiderivatives

1. The accumulated net change function or "area-so-far" function

Suppose we have a rate function r(t) for a quantity Q, and we want to know the accumulated net change in Q for many different time intervals. We fix a given initial time t_0 and let A(t) be the net change from t_0 to t, for many different t-values. Graphically, this is represented by finding the (signed) area between the graph of r and the t-axis from t_0 to t. So A(t) is sometimes called the "area-so-far" function. We know that this area is represented by a definite integral: $\int_{t_0}^t r(s) ds$.

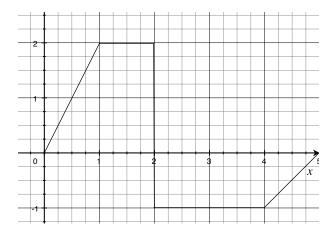
In general, given a function f(x) we may consider the (signed) area between the graph of f and the x-axis from an initial x-value, say a to an arbitrary x. Then the area-so-far function is

$$A(x) = \int_{a}^{x} f(t) dt$$

Note: we cannot write f(x) in the integral, because we have already chosen x to represent the variable for the area-so-far function, and we cannot use it to mean two different things in the same expression. This is why we write f(t) instead. (See 5.3 Example 1.)

Exercise

1. Given the function f(x) below, and an initial x-value of x = 0, we define the area-so-far function to be $A(x) = \int_0^x f(x) dx$.



(a) Evaluate A(x) for the x-values given below:

x	0	1	2	3	4	5
A(x)						

- (b) On what x-interval(s) is A(x) increasing? Why?
- (c) At what x-value(s) does A(x) have a local maximum? Why?

2. Accumulated change and antiderivative functions

Suppose that we have a rate function r(t) for a quantity Q, and we want a formula for Q(t). If we know the initial quantity Q_0 and we know the net change ΔQ from the initial time t_0 to time t, then we can find Q(t) simply by adding:

$$Q(t) = Q_0 + \Delta Q = Q_0 + \int_{t_0}^t r(s) \, ds = Q_0 + A(t)$$

where A(t) is the area-so-far function with starting point t_0 .

Exercises

- 2. A honeybee population starts with 100 bees and increases at a rate of r(t) bees per week. Write an formula for the size P of the honeybee population t weeks later. (Use an integral!)
- 3. A bicyclist is pedaling along a straight road for one hour with a velocity v(t) km/hr. She starts out five kilometers from the lake.
 - (a) Write an integral to represent the net change in the bicyclist's position (i.e. her displacement) during her ride.
 - (b) Write a formula for her position at time t, using an integral.

Since r(t) is the derivative of Q(t), Q(t) is an antiderivative of r(t). Notice that every choice of initial value Q_0 will give an antiderivative for r(t). In particular, choosing $Q_0 = 0$ shows that the area-so-far function itself is an antiderivative for r(t). In other words A'(t) = r(t). This is the idea behind the first part of the Fundamental Theorem of Calculus.

Further, the accumulated net change in Q over any time interval $[t_1, t_2]$ can be written in terms of the area-so-far function:

$$\Delta Q = \int_{t_1}^{t_2} r(t) dt = \int_{t_0}^{t_2} r(t) dt - \int_{t_0}^{t_1} r(t) dt = A(t_2) - A(t_1)$$

This is the idea behind the second part of the Fundamental Theorem of Calculus.

Exercises

4. State the Fundamental Theorem of Calculus, Part 1. (See p 388).

5. Read Examples 2 and 3 in Section 5.3, and find the derivatives of the following area-so-far functions:
(a) A(x) = ∫₅^x sin t cos t dt

(b)
$$A(t) = \int_{1}^{t} s^{2} \ln(s) ds$$

6. State the Fundamental Theorem of Calculus, Part 2. (See p 391.)

7. Read Examples 5, 6, and 7 in Section 5.3. Use FTC 2 to evaluate the definite integrals:
(a) ∫₀⁴ e^x dx

(b) $\int_{1}^{2} 3x^2 dx$

(c) $\int_0^{\pi/2} \cos x \, dx$

3. Evaluating definite integrals using antiderivatives

Sometimes we can find a simple formula for an antiderivative, simply by recognizing the given function as a derivative. For example, an antiderivative for $\cos x$ is $\sin x$, an antiderivative for $3x^2$ is x^3 , etc. Sometimes, it takes a little work to recognize the given function as a derivative. Read p 344-347 in Section 4.9, up to and including Example 4.

Exercises

8. Find the most general form of the antiderivative of:

(a)
$$f(x) = e^x + x^2$$

(b)
$$g(x) = \frac{1}{\sqrt{1-x^2}}$$

(c)
$$h(x) = \sec^2 x + \sqrt{x}$$

9. Evaluate the definite integrals.

(a)
$$\int_{1}^{4} (5 - 2t + 3t^2) dt$$

(b) $\int_0^{\pi/4} (2 \sec \theta \tan \theta + \cos \theta) d\theta$

10. Sometimes it is necessary to rewrite a function in order to recognize it as a derivative, as in Example 4.9.2. For each of the following functions, rewrite the function and then find the most general form of the antiderivative:

(a)
$$f(x) = \frac{x^2 + x + 1}{x}$$

(b)
$$h(t) = \frac{\sin t}{\cos^2 t}$$

11. Evaluate the definite integrals:

(a)
$$\int_0^2 (y-1)(2y+1) \, dy$$

(b) $\int_0^4 (4-t)\sqrt{t} \, dt$

- 12. The velocity (in m/s) of a falling object is given by the formula v(t) = 5 10t.
 - (a) Find the displacement of the object during the first 5 seconds.

(b) Find a formula for the position function s(t) in terms of the initial position s_0 .

13. Find the signed area between the curve $y = x^{-2/3}$ and the x-axis from x = 1 to x = 8.