
Math 114, Prep 11.5 (Alternating Series)

Name: Section:

Names of collaborators:

Main Points:

1. alternating series test

2. alternating series estimation theorem

1. Alternating Series Test

All of the convergence tests we have learned so far (integral test, comparison test, limit comparison test)
have dealt with series with positive terms. In the next section we will learn about two more convergence
tests for series with positive terms (ratio test, root test). In the meantime we discuss a convergence test for
“alternating” series, i.e. series whose terms alternate between positive and negative numbers.

Some of the geometric series we have discussed are alternating. For example,
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is a geometric series with common ratio r = −2/3. Since |r| = 2/3 < 1, this alternating series converges.

Exercises.

1. (a) Read page 727. State the Alternating Series Test.

(b) Read Example 1 on page 729. What is the alternating harmonic series? Does it converge or
diverge?

(c) Read Example 2 on page 729. Why can’t we use the Alternating Series Test in this example?
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2. A series
∑
an is conditionally convergent if

∑
an converges but

∑
|an| does not. It is called

absolutely convergent if
∑
|an| converges.

(a) Is the alternating harmonic series conditionally convergent or absolutely convergent?

(b) Is the series

∞∑
n=1

(
−2

3

)n−1

(from the intro) conditionally convergent or absolutely convergent?

3. In this exercise, we will use the Alternating Series Test to show that the series

∞∑
n=1

(−1)n
√
n

2n+ 3
converges.

(a) (Set-up) Define the series
∑
an to be the given series and define the sequence {bn} to be the

(positive) absolute values of the terms an, i.e bn = |an|.

(b) (Check Hypotheses) Check to see whether the sequence {bn} satisfies the two hypotheses of
the Alternating Series Test, as follows:

i. Show that {bn} is a decreasing sequence, i.e. bn+1 ≥ bn for all n (or at least for all n
sufficiently large.) (Hint: Define a function f(x) that “matches” bn in the sense that
f(n) = bn, and take the derivative of f(x). See Example 3, page 729.)
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ii. Show that the sequence bn approaches zero by taking the limit of bn as n→∞.

(c) (Apply Test and Draw Conclusion) Use the Alternating Series Test to conclude that the
series

∑
an converges, and state your conclusion in a sentence. Make sure to include the phrase

“by the Alternating Series Test” somewhere in your sentence.

4. Consider the series

∞∑
n=1

(−1)n cos(π/n).

(a) Use a calculator or Mathematica to find decimal approximations for the first five terms of this
series. Do you think this series converges or diverges?

(b) Give a careful argument, using the Alternating Series Test or the Test for Divergence, to prove
that the series converges or diverges.
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2. Alternating Series Estimation Theorem

Recall that we often estimate the sum s of an infinite series using a partial sum sn for some large number
n: s ≈ sn. But, of course, an approximation is not very informative unless it is accompanied by an error
estimate. This is why we are interested in estimating the remainders of infinite series. In the case of a
convergent alternating series, the remainder is quite easy to estimate.

Exercises

5. Read the paragraph on Estimating Sums (page 730), and copy the Alternating Series Estimation
Theorem below. See Figure 1 (page 728) for a picture illustrating why the estimate makes sense.

6. Consider the series

∞∑
n=1

(−0.8)n

n!
.

(a) Use Mathematica to graph the first 10 terms and first 10 partial sums on the same screen. (See
the Mathematica file on Blackboard for help with plotting sequences.) Sketch your results below.

(b) Use Mathematica to graph the first 100 partial sums. Use your graph to make a rough estimate
of the sum of the series.

s ≈
(c) Use the Alternating Series Estimation Theorem to estimate the sum correct to four decimal

places. (See Example 4.)
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