Name: \qquad

Section:

\qquad

Names of collaborators:

Main Points:

1. alternating series test
2. alternating series estimation theorem

1. Alternating Series Test

All of the convergence tests we have learned so far (integral test, comparison test, limit comparison test) have dealt with series with positive terms. In the next section we will learn about two more convergence tests for series with positive terms (ratio test, root test). In the meantime we discuss a convergence test for "alternating" series, i.e. series whose terms alternate between positive and negative numbers.

Some of the geometric series we have discussed are alternating. For example,

$$
\sum_{n=1}^{\infty}\left(\frac{-2}{3}\right)^{n-1}=1-\frac{2}{3}+\frac{4}{9}-\frac{8}{27}+\ldots
$$

is a geometric series with common ratio $r=-2 / 3$. Since $|r|=2 / 3<1$, this alternating series converges.

Exercises.

1. (a) Read page 727. State the Alternating Series Test.
(b) Read Example 1 on page 729. What is the alternating harmonic series? Does it converge or diverge?
(c) Read Example 2 on page 729. Why can't we use the Alternating Series Test in this example?
2. A series $\sum a_{n}$ is conditionally convergent if $\sum a_{n}$ converges but $\sum\left|a_{n}\right|$ does not. It is called absolutely convergent if $\sum\left|a_{n}\right|$ converges.
(a) Is the alternating harmonic series conditionally convergent or absolutely convergent?
(b) Is the series $\sum_{n=1}^{\infty}\left(\frac{-2}{3}\right)^{n-1}$ (from the intro) conditionally convergent or absolutely convergent?
3. In this exercise, we will use the Alternating Series Test to show that the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{n}}{2 n+3}$ converges.
(a) (Set-up) Define the series $\sum a_{n}$ to be the given series and define the sequence $\left\{b_{n}\right\}$ to be the (positive) absolute values of the terms a_{n}, i.e $b_{n}=\left|a_{n}\right|$.
(b) (Check Hypotheses) Check to see whether the sequence $\left\{b_{n}\right\}$ satisfies the two hypotheses of the Alternating Series Test, as follows:
i. Show that $\left\{b_{n}\right\}$ is a decreasing sequence, i.e. $b_{n+1} \geq b_{n}$ for all n (or at least for all n sufficiently large.) (Hint: Define a function $f(x)$ that "matches" b_{n} in the sense that $f(n)=b_{n}$, and take the derivative of $f(x)$. See Example 3, page 729.)
ii. Show that the sequence b_{n} approaches zero by taking the limit of b_{n} as $n \rightarrow \infty$.
(c) (Apply Test and Draw Conclusion) Use the Alternating Series Test to conclude that the series $\sum a_{n}$ converges, and state your conclusion in a sentence. Make sure to include the phrase "by the Alternating Series Test" somewhere in your sentence.
4. Consider the series $\sum_{n=1}^{\infty}(-1)^{n} \cos (\pi / n)$.
(a) Use a calculator or Mathematica to find decimal approximations for the first five terms of this series. Do you think this series converges or diverges?
(b) Give a careful argument, using the Alternating Series Test or the Test for Divergence, to prove that the series converges or diverges.

2. Alternating Series Estimation Theorem

Recall that we often estimate the sum s of an infinite series using a partial sum s_{n} for some large number $n: s \approx s_{n}$. But, of course, an approximation is not very informative unless it is accompanied by an error estimate. This is why we are interested in estimating the remainders of infinite series. In the case of a convergent alternating series, the remainder is quite easy to estimate.

Exercises

5. Read the paragraph on Estimating Sums (page 730), and copy the Alternating Series Estimation Theorem below. See Figure 1 (page 728) for a picture illustrating why the estimate makes sense.
6. Consider the series $\sum_{n=1}^{\infty} \frac{(-0.8)^{n}}{n!}$.
(a) Use Mathematica to graph the first 10 terms and first 10 partial sums on the same screen. (See the Mathematica file on Blackboard for help with plotting sequences.) Sketch your results below.
(b) Use Mathematica to graph the first 100 partial sums. Use your graph to make a rough estimate of the sum of the series.

$$
s \approx
$$

(c) Use the Alternating Series Estimation Theorem to estimate the sum correct to four decimal places. (See Example 4.)

