Name:	Section:
Names of collaborators:	

Main Points:

- 1. Using vertical distance between curves
- 2. Using horizontal distance between curves

1. Using vertical distance between curves

Recall that we use a definite integral to find the (signed) area between a curve and the x-axis. If $f(x) \ge 0$ on an interval [a, b], then the definite integral gives a literal area:

(area between
$$f(x)$$
 and x -axis from $x=a$ to $x=b$) $=\int_a^b f(x) \, dx$

Similarly, if a function $f(x) \ge g(x)$ on an interval [a, b], the area between the two curves from x = a to x = b is obtained by subtracting the smaller area from the greater area:

(area between
$$f(x)$$
 and $g(x)$ from $x=a$ to $x=b$) $=$ $\int_a^b f(x) \, dx - \int_a^b g(x) \, dx = \int_a^b \left(f(x) - g(x) \right) dx$

Exercises.

1. Find the area bounded by the curves: $y = \sin x$, $y = e^x$, x = 0, $x = \pi/2$. (Hint: You need to figure out which curve lies above the other. Sketching the graphs will help. See Example 1, p 423.)

2. Find the area bounded by the curves $y = x^2 - 4x$ and $y = 2x - x^2$. (Hint: You need to find the points of intersection of the two curves, as in Example 2, p 423.)

3.	Find the area bounded by the curves $y = \sin(\pi x/2)$ and $y = x$. (Hint: These curves cross each of	her
	three times, and so it is necessary to break up the area into two areas, as in Example 5, p 425. T	he
	two paragraphs before Example 5 are helpful to read.)	

2. Using horizontal distances between curves

Not all curves can be expressed in the form y = f(x). For example, a right-opening parabola has equation $x = y^2$. The area between two curves like this can sometimes be expressed using an integral in y instead of an integral in x. In particular, if the curve x = R(y) is to the right of a curve x = L(y) for y between the values of y = c and y = d,

(area between
$$R(y)$$
 and $L(y)$ from $y = c$ to $y = d$) = $\int_{c}^{d} R(y) - L(y) dx$

See the discussion and example (Example 6) on page 426.

Exercises

4. Find the area bounded by the curves $x = y^2 - 4y$ and $x = 2y - y^2$ from y = 1 to y = 2. (Sketching the two curves will help.)

Math 114, Prep 6.1 (Areas Between Curves)

5. Find the area bounded by the curves $4x + y^2 = 12$ and x = y. (Hint: rewrite the first equation to get x on a side by itself.)