Name: \qquad
\qquad

Names of collaborators:

Main Points:

1. Using vertical distance between curves
2. Using horizontal distance between curves

1. Using vertical distance between curves

Recall that we use a definite integral to find the (signed) area between a curve and the x-axis. If $f(x) \geq 0$ on an interval $[a, b]$, then the definite integral gives a literal area:

$$
\text { (area between } f(x) \text { and } x \text {-axis from } x=a \text { to } x=b \text {) }=\int_{a}^{b} f(x) d x
$$

Similarly, if a function $f(x) \geq g(x)$ on an interval $[a, b]$, the area between the two curves from $x=a$ to $x=b$ is obtained by subtracting the smaller area from the greater area:
(area between $f(x)$ and $g(x)$ from $x=a$ to $x=b$) $=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x=\int_{a}^{b}(f(x)-g(x)) d x$

Exercises.

1. Find the area bounded by the curves: $y=\sin x, y=e^{x}, x=0, x=\pi / 2$. (Hint: You need to figure out which curve lies above the other. Sketching the graphs will help. See Example 1, p 423.)
2. Find the area bounded by the curves $y=x^{2}-4 x$ and $y=2 x-x^{2}$. (Hint: You need to find the points of intersection of the two curves, as in Example 2, p 423.)
3. Find the area bounded by the curves $y=\sin (\pi x / 2)$ and $y=x$. (Hint: These curves cross each other three times, and so it is necessary to break up the area into two areas, as in Example 5, p 425. The two paragraphs before Example 5 are helpful to read.)

2. Using horizontal distances between curves

Not all curves can be expressed in the form $y=f(x)$. For example, a right-opening parabola has equation $x=y^{2}$. The area between two curves like this can sometimes be expressed using an integral in y instead of an integral in x. In particular, if the curve $x=R(y)$ is to the right of a curve $x=L(y)$ for y between the values of $y=c$ and $y=d$,

$$
\text { (area between } R(y) \text { and } L(y) \text { from } y=c \text { to } y=d \text {) }=\int_{c}^{d} R(y)-L(y) d x
$$

See the discussion and example (Example 6) on page 426.

Exercises

4. Find the area bounded by the curves $x=y^{2}-4 y$ and $x=2 y-y^{2}$ from $y=1$ to $y=2$. (Sketching the two curves will help.)
5. Find the area bounded by the curves $4 x+y^{2}=12$ and $x=y$. (Hint: rewrite the first equation to get x on a side by itself.)
