Name: \qquad

Section:

\qquad

Names of collaborators:

Main Points:

1. Average value of a continuous function over an interval
2. MVT for integrals

Exercises.

1. Read p 451-452, up to but not including Example 1. Finish the sentence with the formula in the red box: The average value of a continuous function f on an interval $[a, b]$ is \ldots
2. Read Example 1. Find the average value of $f(x)=1-x^{2}$ on the interval $[-1,1]$.
3. Read the rest of p 452 , about the MVT for integrals, and the geometric interpretation of the MVT for integrals. Read Example 2. Consider, as above, the function $f(x)=1-x^{2}$ on the interval $[-1,1]$.
(a) Find all numbers c in the interval $[-1,1]$ such that $f(c)=f_{\text {ave }}$.
(b) Sketch the graph of f and a rectangle whose area is the same as the area under the graph of f.
4. Consider the function $f(x)=4 x-x^{2}$ on $[0,4]$.
(a) Find the average value of f on the interval.
(b) Find all numbers c in the interval such that $f_{\text {ave }}=f(c)$.
(c) Sketch the graph of f and a rectangle whose area is the same as the area under the graph of f.
5. Find the average value of $f(x)=1 / x$ on the interval $[1,3]$.
6. Find the average value of $f(x)=x^{2} \sqrt{1+x^{3}}$ on the interval $[0,2]$.
