Name:	Section:
Names of collaborators:	

Main Points:

- 1. Average value of a continuous function over an interval
- 2. MVT for integrals

Exercises.

- 1. Read p 451-452, up to but not including Example 1. Finish the sentence with the formula in the red box: The average value of a continuous function f on an interval [a, b] is ...
- 2. Read Example 1. Find the average value of $f(x) = 1 x^2$ on the interval [-1, 1].

- 3. Read the rest of p 452, about the MVT for integrals, and the geometric interpretation of the MVT for integrals. Read Example 2. Consider, as above, the function $f(x) = 1 x^2$ on the interval [-1, 1].
 - (a) Find all numbers c in the interval [-1, 1] such that $f(c) = f_{ave}$.

(b) Sketch the graph of f and a rectangle whose area is the same as the area under the graph of f.

- 4. Consider the function $f(x) = 4x x^2$ on [0, 4].
 - (a) Find the average value of f on the interval.

(b) Find all numbers c in the interval such that $f_{\text{ave}} = f(c)$.

(c) Sketch the graph of f and a rectangle whose area is the same as the area under the graph of f.

5. Find the average value of f(x) = 1/x on the interval [1,3].

6. Find the average value of $f(x) = x^2 \sqrt{1+x^3}$ on the interval [0,2].