Name: \qquad

Section:

\qquad

Names of collaborators:

Main Points:

1. represent a given rational function with a power function
2. using sigma notation, changing indices

Recall that $\sum_{n=1}^{\infty} x^{n}$ is a function with domain $(-1,1)$. We can find a rational function that agrees with the power series on its domain by remembering that the sum of a geometric series with initial term a and common ratio r is $a /(1-r)$. Thus

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\ldots
$$

We can use this fact to find power series representations of some functions that are similar to this one. For example, with $a=3$ and $r=4 x$,

$$
\frac{3}{1-4 x}=\sum_{n=0}^{\infty} 3 \cdot(4 x)^{n}=\sum_{n=0}^{\infty} 3 \cdot 4^{n} x^{n}=3+12 x+48 x^{3}+\ldots
$$

This series will converge when $|r|<1$, i.e. when $|4 x|<1$, i.e. when $|x|<1 / 4$. Thus the interval of convergence of the power series is $(-1 / 4,1 / 4)$.

See Examples 1, 2, and 3 in the textbook for more examples of how to find a power series representation of a function, using the geometric series.

Exercises.

1. Consider the function $f(x)=\frac{2}{1-3 x}$.
(a) Find a and r such that $f(x)=a /(1-r)$.
(b) Write $f(x)$ as a power series using the sigma notation and in expanded form (with ellipsis.)
(c) Find the radius and interval of convergence of the power series.
2. Find a power series representation and the radius of convergence for each of the following:
(a) $g(x)=\frac{x}{1+x^{2}}$
(b) $h(x)=\frac{1}{2-x}$
(c) $F(x)=\frac{5}{1-4 x^{2}}$
(d) $G(x)=\frac{x^{2}}{8-x^{3}}$
3. Consider the function $f(x)=\frac{2}{1-3 x}$ from the first exercise.
(a) Write down the first five partial sum functions $s_{0}(x), s_{1}(x), \ldots, s_{4}(x)$.
(b) Use Mathematica to plot $f(x)$ and $s_{0}(x)$ on the same screen. Then do the same for $f(x)$ and each of the other partial sum functions you found in (a). Sketch your results below. Can you tell from your graphs what the radius of convergence is?
