Name: $\qquad$
$\qquad$

## Names of collaborators:

$\qquad$

## Main Points:

1. Basic Trig Facts
2. Differentiation
3. Antiderivatives and indefinite integrals
4. Substitution
5. Areas and definite integrals

## 1. Basic Trig Facts

See Appendix D in the textbook for a review of trigonometry. You are expected to know basic facts about the six trigonometric functions, including their values at standard angles, the shapes of their graphs, and the Pythagorean identities.

## Exercises

1. Fill in the following table, using the five standard angles in the first quadrant.

| Angle, $\theta$ |  | $\sin \theta$ | $\cos \theta$ | $\tan \theta$ |
| :---: | :---: | :--- | :--- | :--- |
| $\operatorname{deg}$ | $\operatorname{rad}$ |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

2. State the three Pythagorean Trig Identities:
(a)
(b)
(c)
3. $\sin \left(-150^{\circ}\right)=$ $\qquad$
4. $\cos \left(\frac{3 \pi}{2}\right)=$ $\qquad$
5. $\csc \left(120^{\circ}\right)=$ $\qquad$
6. $\tan \left(\frac{-5 \pi}{4}\right)=$

## 2. Differentiation

Make sure you know the derivatives of the following "standard" functions: power functions, exponential functions, log functions, trig functions, inverse trig functions, as well as rules for differentiating combinations (sums, differences, products, quotients, compositions) of functions.

## Exercises

7. For each function below, state what kind of function it is (power, exponential, log, trig, inverse trig) and differentiate.
(a) $f(x)=x^{5}$
(b) $g(x)=5^{x}$
(c) $h(x)=\cos x$
(d) $Q(t)=t^{4 / 3}$
(e) $P(t)=\ln t$
(f) $\theta(t)=\sec ^{-1}(t)$
(g) $J(s)=\cot (s)$
(h) $I(s)=e^{s}$
8. Differentiate.
(a) $y=\sqrt{x}+\sqrt{\pi}$
(b) $y=x^{4} \sin (3 x)$
(c) $y=\sin x \cos x$
(d) $y=\frac{3 t+1}{2 t-1}$
(e) $y=\arcsin \left(x^{2}\right)$

## 3. Antiderivatives and indefinite integrals

Make sure you can find antiderivatives by recognizing a function as the derivative of a "standard" function, using algebra to rewrite if necessary first. Remember that an indefinite integral is a family of antiderivatives, which are related by vertical shifts $(+C$.

## Exercises

9. State an antiderivative for the following functions:
(a) $f(x)=3 \cos x+1$
(b) $p(s)=s^{2}+s^{-2}$
(c) $g(x)=\csc x \cot x$
(d) $R(z)=z^{-1}(z+1)$
10. Evaluate the indefinite integrals
(a) $\int e^{x}+e^{2} d x$
(b) $\int \frac{1}{1+w^{2}} d w$
(c) $\int \frac{5+s}{\sqrt{s}} d s$

## 4. Substitution

The technique of substitution is used to "undo the chain rule." See Section 5.5 if you need a refresher.

## Exercises

11. Evaluate the indefinite integrals, using substitution.
(a) $\int 2 x e^{x^{2}} d x$
(b) $\int t^{2}\left(t^{3}+3\right)^{9} d t$
(c) $\int \sin ^{5} \theta \cos \theta d \theta$
(d) $\int s^{3} \sqrt{s^{2}+1} d s$

## 5. Areas and definite integrals

The definite integral is used to find areas. We usually use the antiderivatives to evaluate definite integrals (FTC.)

## Exercises

12. Evaluate the definite integrals.
(a) $\int_{0}^{9} w^{-1 / 2} d w$
(b) $\int_{1}^{e^{2}} t^{-1} d t$
13. Find the (signed) area between the given curve and the $x$-axis, from $x=a$ to $x=b$.
(a) $y=x^{4}, a=0, b=1$
(b) $y=\sin x, a=-\pi / 4, b=\pi / 4$
(c) $y=2 x \cos \left(x^{2}\right), a=0, b=\sqrt{\pi}$
