Name: \qquad

Section:

\qquad

Names of collaborators:

Main Points:

1. Taylor series and Taylor polynomials
2. using Taylor series

Recall that we can consider a power series as polynomial with an infinite number of terms. For example,

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\ldots+x^{n}+\ldots
$$

We can also consider this as representing a family of polynomial approximations:

$$
\begin{aligned}
& \frac{1}{1-x} \approx s_{0}(x)=1 \\
& \frac{1}{1-x} \approx s_{1}(x)=1+x \\
& \frac{1}{1-x} \approx s_{2}(x)=1+x+x^{2} \\
& \frac{1}{1-x} \approx s_{3}(x)=1+x+x^{2}+x^{3} \\
& \vdots \\
& \frac{1}{1-x} \approx s_{n}(x)=1+x+x^{2}+x^{3}+\ldots+x^{n} \\
& \vdots
\end{aligned}
$$

Recall (from Calc I), that we have another way of obtaining polynomial approximations: via derivatives. If a function $f(x)$ is continuous at $x=a$, we can approximate $f(x)$ by a constant function $f(x) \approx f(a)$, at least near $x=a$. If $f(x)$ is differentiable, we can approximate it by a linear function (the tangent line).

$$
\begin{aligned}
& f(x) \approx f(a) \\
& f(x) \approx f(a)+f^{\prime}(a)(x-a)
\end{aligned}
$$

Extending this idea leads to the notion of Taylor polynomials and Taylor series. (See Example 1.)

Exercises.

1. Read pages 753-755 of the section. State Theorem 5 (page 754).
2. Read Examples 4 and 5.
(a) What is the Taylor series for $\sin (x)$ centered at $x=0$? (A Taylor series centered at $x=0$ is also called a Maclaurin series.) What is the Taylor series of $\cos (x)$ centered at $x=0$?
(b) Write out the first three Taylor polynomials of $\sin x$ at $x=0$. Do the same for $\cos x$.
3. Find the first four Taylor polynomials of $f(x)=\sin (2 x)$ centered at $x=0$.
4. (a) Find the first four Taylor polynomials of $g(x)=\frac{1}{x}$ centered at $x=-3$.
(b) Find the Taylor series of $f(x)$ centered at $x=-3$. What is the radius of convergence?
5. We can use known Taylor series to find Taylor series for related functions. (See Example 6.) Use the Taylor series for e^{x} to find a Taylor series for $e^{-x / 2}$.
6. We can also use known Taylor series to find the sums of certain series. (See Example 10.) Find the sum of the series $\sum_{n=0}^{\infty} \frac{3^{n}}{5^{n} n!}$.
7. The graph of a function $f(x)$ is shown below.

(a) Explain why the series

$$
2-0.8(x-1)+0.4(x-1)^{2}-0.1(x-1)^{3}+\ldots
$$

is not the Taylor series of f centered at $x=1$.
(b) Explain why the series

$$
2.8+0.5(x-2)+1.5(x-2)^{2}+0.1(x-2)^{3}+\ldots
$$

is not the Taylor series of f centered at $x=2$.

