Name: \qquad Section: \qquad

Names of collaborators: \qquad

Main Points:

1. Use simple substitution
2. Use trig. identities

1. Using the Pythagorean Identity for Sine and Cosine

The Pythagorean identity $\sin ^{2} x+\cos ^{2} x=1$ can be used with simple substitution to evaluate some trigonometric integrals. Read Examples 1 and 2 on page 471.

Exercises

1. Use the Pythagorean identity $\sin ^{2} x+\cos ^{2} x=1$ and simple substitution to evaluate the integrals.
(a) $\int \sin ^{2} x \cos ^{3} x d x$
(b) $\int \sin ^{7} x \cos ^{5} x d x$

2. Using the Half-Angle Formulas

For some trig integrals the half-angle formulas are more useful. Read page 472.

Exercises

2. State the half-angle formulas, given at the top of page 472 .
3. Use the half-angle formulas to rewrite the integrand, and then evaluate the integral.
(a) $\int \cos ^{2} \theta d \theta$
(b) $\int \sin ^{2} \theta \cos ^{4} \theta d \theta$
4. Explain how you can tell when it might be worthwhile to use the Pythagorean identity for sine and cosine and when it might be useful to use a half-angle formula instead.

3. Integrals with Tangent and Secant

Using the Pythagorean identity $\tan ^{2} x+1=\sec ^{2} x$ along with simple substitution is often useful for trig integrals involving tangent and secant. Read Examples 5 and 6 on pages 473 and 474 .

Exercises

5. Evaluate the integrals:
(a) $\int \tan ^{2} \theta \sec ^{4} \theta d \theta$.
(b) Evaluate $\int \tan x \sec ^{3} x d x$.
6. How can you tell when it might be useful to use the substitution $u=\tan x$ and when it might be better to use $u=\sec x$ instead?
7. State the antiderivatives of tangent and secant. (See the top of page 475.)

4. Using Product-to-Sum Identities

Another set of identities, sometimes called "product-to-sum" identities can also be useful.

Exercises

8. State the three "product-to-sum" identities, given in the red box on page 476 .
9. Evaluate $\int \cos x \cos (4 x) d x$.
