
Math 240, 4.4 Coordinate Systems A. DeCelles

1 Overview

Main ideas:

1. unique representation theorem; coordinates of a vector relative to a particular basis

2. graphical interpretation of coordinates

3. change-of-coordinates matrix

4. coordinate mapping from abstract vsp to Rn is an isomorphism (one-to-one and onto linear
transformation)

Examples in text:

1. coordinate vectors in R2

2. coordinates relative to standard basis for R2

3. crystalography

4. find coordinate vector in R2

5. coordinate mapping from P3 to R4

6. verify that certain polynomials in P2 are linearly dependent

7. determine whether a vector x in R3 is in the span of two given vectors v1 and v2, and write x in
coordinates relative to v1 and v2

2 Discussion and Worked Examples

2.1 Coordinates Relative to a Basis

Having a finite basis for an abstract vector space allows us to treat the abstract vector space like Rn. This
is achieved by writing abstract vectors in coordinates relative to the basis. In this way, we can associate a
finite list of real numbers (i.e. a vector in Rn) to an abstract vector.

For example, a polynomial in P3 is uniquely determined by its coefficients. Recall that the standard basis
for P3 is {1, x, x2, x3}. The coordinates of the polynomial P (x) = 3 + 4x− 6x2 + 11x3 relative to this basis
are the coefficients 3, 4,−6, and 11. The coordinate vector of P (x) relative to this basis is the vector
(3, 4,−6, 11) in R4.

It is always possible to write an abstract vector in coordinates relative to a basis, if the abstract vector
space has a finite basis. To see why this is true we need to do a little work.

Theorem If an abstract vector space V has a finite basis, then any vector in V can be written uniquely as
a linear combination of basis vectors.

Proof Because the basis is a spanning set for V , any vector in V can be written as a linear combination of
basis vectors. To show that this representation is unique, we need to use the linear independence of the
basis.

Let u1, . . .un be the basis vectors. Suppose that v can be written as a linear combination of basis vectors
in two ways, i.e. suppose there are real numbers c1, . . . , cn, and d1, . . . , dn such that

v = c1u1 + . . . + cnun and v = d1u1 + . . . + dnun
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Subtracting, we get
0 = v − v = (c1 − d1)u1 + . . . + (cn − dn)un

The linear independence of the basis vectors implies that c1 = d1, . . . , cn = dn, since the only way to write
the zero vector as a linear combination of linearly independent vectors is to have all the weights be zero. �

Note Given a finite, ordered basis B of an abstract vector space V , we now have a way to associate a
unique vector in Rn (the coordinate vector with respect to B) to a given vector in V . This association gives
rise to a mapping from V to Rn called the coordinate mapping. Because of this tight association between
vectors in V and vectors in Rn, we will be able to answer questions about vectors in V by looking at the
corresponding vectors in Rn.

First we will show how to express a vector in R2 in coordinates relative to a basis for R2.

2.2 Examples in R2

Example Suppose u1 = [ 10 ], u2 = [ 21 ], and v =
[−1

1

]
. Write v in coordinates relative to u1 and u2.

What is the graphical interpretation of these coordinates?

First we write v as a linear combination of u1 and u2. In general, we can do this using row reduction of an
augmented matrix, but in this case it is clear that v = u2 − 3u1. The coordinate vector for v relative to
{u1, u2} is (−3, 1).

Note Note that the order of the coordinates matters! In order for the coordinate vector relative to a basis
to be well-defined, we must fix an ordering of the basis.

Example Write v =
[−1

1

]
in coordinates relative to the standard basis for R2. What is the graphical

interpretation of these coordinates?

Since v = −1e1 + 1e2, the coordinate vector for v relative to the standard basis is (−1, 1). This is, in fact,
why {e1, e2} is called the standard basis.

Notice that writing a vector b in Rn in coordinates relative to a basis for Rn comes down to solving a
matrix-vector equation Ax = b, where A is the matrix whose columns are the given basis vectors. Since the
columns of A are a basis for Rn, A is invertible. Thus the inverse matrix A−1 is changes coordinates from
the standard basis for Rn to a given basis, since A−1b yields the coordinate vector for b with respect to the
columns of A. The linear transformation b 7→ A−1b is the coordinate mapping mentioned above. On the
other hand, the matrix A changes coordinates from a given basis to the standard basis for Rn.

(In the text, the coordinate vector for a vector v with respect to a basis B is denoted [ v ]B. The matrix
that changes coordinates from B to the standard basis in Rn is called the change-of-coordinates matrix and
denoted PB. What we have observed is that v = PB[ v ]B.)

Example Find the matrix that changes coordinates from the standard basis for R2 to the basis
B = {[ 11 ] , [ 25 ]}. Use this matrix to write v =

[
0
−1
]

and w = [ 23 ] in coordinates relative to B.

The matrix that changes coordinates from the standard basis to B is

P−1B =

[
1 2
−1 1

]−1
=

1

5− 2

[
5 −2
−1 1

]
=

1

3

[
5 −2
−1 1

]
Thus the coordinate vector for v with respect to B is

[ v ]B =
1

3

[
5 −2
−1 1

] [
0
−1

]
=

[
8/3
−1/3

]
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The coordinate vector for w with respect to B is

[w ]B =
1

3

[
5 −2
−1 1

] [
2
3

]
=

[
4/3
1/3

]

Example Suppose that a vector v, in coordinates relative to B, the basis for R2 in the previous example,
is [ v ]B = (−4, 5). What is v relative to the standard basis for R2?

In this case, we simply multiply the coordinate vector by the matrix whose columns are the basis elements:

v = PB [ v ]B =

[
1 2
−1 1

] [
−4
5

]
=

[
6
9

]

2.3 The Coordinate Mapping as an Isomorphism

As mentioned above, if a vector space V has a finite basis {u1, . . . , un}, we can associate vectors in V to
vectors in Rn using the coordinate mapping. Observe that:

1. Given a vector w = (c1, . . . , cn) in Rn, the vector v = c1u1 + . . . + cnun in V will be mapped to w
under the coordinate mapping.

2. Since two vectors in V that have the same coordinates relative to {u1, . . . , un} are equal, this vector v
in V , whose coordinate vector is w in Rn, is unique.

Thus there is a one-to-one correspondence between vectors in V and vectors in Rn.

Example Consider the coordinate vector (1,−2, 3,−4) in R4. Clearly the the polynomial
P (x) = x− 2x + 3x2 − 4x3 is the unique polynomial in P3 whose coordinates relative to the standard basis
for P3 are 1,−2, 3, and −4, respectively.

Observe that scaling P by a real number results in a polynomial whose coordinate vector (w.r.t. the std.
basis for P3) is scaled by the same number.

5 · P (x) = 5− 10x + 15x2 − 20x3 −→ (5,−10, 15,−20) = 5(1,−2, 3,−4)

Now consider also Q(x) = 2 + 3x− x2 + x3 in P3, whose coordinate vector relative to the standard basis for
P3 is (2, 3,−1, 1). Notice that adding P and Q results in a polynomial whose coordinate vector is the sum
of the coordinate vectors of P and Q.

P (x) + Q(x) = 3 + x + 2x2 − 3x3 −→ (3, 1, 2,−3) = (1 + 2, −2 + 3, 3− 1, −4 + 1)

Generalizing this, we can see that the coordinate mapping is a linear transformation, since: (1) scaling a
vector in V scales the weights occuring in the expression for v as a linear combination of basis vectors,
which exactly corresponds to scaling the coordinate vector in Rn, and (2) adding two vectors in V adds
their weights with respect to the given basis, which exactly corresponds to adding coordinate vectors in Rn.

Thus, the coordinate mapping from V to Rn, given by v → [ v ]B, where B is a basis of n vectors for V , is
an isomorphism, i.e. a one-to-one and onto linear transformation. This means that V and Rn have exactly
the same structure as vector spaces.

In particular, this means that we can again use row reduction to determine whether vectors (in a vector
space with a finite basis) are linearly independent!
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Example Determine whether the following polynomials are linearly independent in P3:

P (x) = 1− 2x2 − x3

Q(x) = x + 2x3

R(x) = 1 + x− 2x2

The coordinate vectors for P (x), Q(x), and R(x) with respect to the standard basis for P3 are

P (x) → (1, 0,−2,−1)

Q(x) → (0, 1, 0, 2)

R(x) → (1, 1,−2, 0)

These vectors in R4 are linearly independent if and only if the homogeneous matrix equation Ax = 0 has
only the trivial solution, where A is the matrix whose columns are the given vectors.

1 0 1
0 1 1
−2 0 −2
−1 2 0

 →


1 0 1
0 1 1
0 0 0
0 2 1

 →


1 0 1
0 1 1
0 0 −1
0 0 0


Since there is a pivot in every column, the columns of A are linearly independent as vectors in R4. Thus
the three polynomials are linearly independent in P3

How would we justify this rigorously? Well, recall that in your homework (4.3 #31-32), you showed that if
T : V →W is a one-to-one linear transformation of vector spaces and {v1, . . . , vp} is a set of vectors in V ,
then {v1, . . . , vp} is linearly independent in V if and only if {T (v1), . . . , T (vp)} is linearly independent in W .

Note that if T is also onto {v1, . . . , vp} spans V if and only if {T (v1), . . . , T (vp)} spans W . It is worth
thinking about why this is true.
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