1 Overview

Main ideas:

- 1. unique representation theorem; coordinates of a vector relative to a particular basis
- 2. graphical interpretation of coordinates
- 3. change-of-coordinates matrix
- 4. coordinate mapping from abstract vsp to \mathbb{R}^n is an isomorphism (one-to-one and onto linear transformation)

Examples in text:

- 1. coordinate vectors in \mathbb{R}^2
- 2. coordinates relative to standard basis for \mathbb{R}^2
- 3. crystalography
- 4. find coordinate vector in \mathbb{R}^2
- 5. coordinate mapping from \mathbb{P}_3 to \mathbb{R}^4
- 6. verify that certain polynomials in \mathbb{P}_2 are linearly dependent
- 7. determine whether a vector x in \mathbb{R}^3 is in the span of two given vectors v_1 and v_2 , and write x in coordinates relative to v_1 and v_2

2 Discussion and Worked Examples

2.1 Coordinates Relative to a Basis

Having a finite basis for an abstract vector space allows us to treat the abstract vector space like \mathbb{R}^n . This is achieved by writing abstract vectors *in coordinates* relative to the basis. In this way, we can associate a finite list of real numbers (i.e. a vector in \mathbb{R}^n) to an abstract vector.

For example, a polynomial in \mathbb{P}_3 is uniquely determined by its coefficients. Recall that the standard basis for \mathbb{P}_3 is $\{1, x, x^2, x^3\}$. The *coordinates* of the polynomial $P(x) = 3 + 4x - 6x^2 + 11x^3$ relative to this basis are the coefficients 3, 4, -6, and 11. The *coordinate vector* of P(x) relative to this basis is the vector (3, 4, -6, 11) in \mathbb{R}^4 .

It is always possible to write an abstract vector in coordinates relative to a basis, if the abstract vector space *has* a *finite* basis. To see why this is true we need to do a little work.

Theorem If an abstract vector space V has a finite basis, then any vector in V can be written uniquely as a linear combination of basis vectors.

Proof Because the basis is a spanning set for V, any vector in V can be written as a linear combination of basis vectors. To show that this representation is unique, we need to use the linear independence of the basis.

Let $u_1, \ldots u_n$ be the basis vectors. Suppose that v can be written as a linear combination of basis vectors in two ways, i.e. suppose there are real numbers c_1, \ldots, c_n , and d_1, \ldots, d_n such that

 $v = c_1 u_1 + \ldots + c_n u_n$ and $v = d_1 u_1 + \ldots + d_n u_n$

Subtracting, we get

$$0 = v - v = (c_1 - d_1)u_1 + \ldots + (c_n - d_n)u_n$$

The linear independence of the basis vectors implies that $c_1 = d_1, \ldots, c_n = d_n$, since the only way to write the zero vector as a linear combination of linearly independent vectors is to have all the weights be zero. \Box

Note Given a finite, ordered basis \mathcal{B} of an abstract vector space V, we now have a way to associate a unique vector in \mathbb{R}^n (the coordinate vector with respect to \mathcal{B}) to a given vector in V. This association gives rise to a mapping from V to \mathbb{R}^n called the *coordinate mapping*. Because of this tight association between vectors in V and vectors in \mathbb{R}^n , we will be able to answer questions about vectors in V by looking at the corresponding vectors in \mathbb{R}^n .

First we will show how to express a vector in \mathbb{R}^2 in coordinates relative to a basis for \mathbb{R}^2 .

2.2 Examples in \mathbb{R}^2

Example Suppose $u_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $u_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, and $v = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Write v in coordinates relative to u_1 and u_2 . What is the graphical interpretation of these coordinates?

First we write v as a linear combination of u_1 and u_2 . In general, we can do this using row reduction of an augmented matrix, but in this case it is clear that $v = u_2 - 3u_1$. The coordinate vector for v relative to $\{u_1, u_2\}$ is (-3, 1).

Note Note that the order of the coordinates matters! In order for the coordinate vector relative to a basis to be well-defined, we must fix an ordering of the basis.

Example Write $v = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ in coordinates relative to the standard basis for \mathbb{R}^2 . What is the graphical interpretation of these coordinates?

Since $v = -1e_1 + 1e_2$, the coordinate vector for v relative to the standard basis is (-1, 1). This is, in fact, why $\{e_1, e_2\}$ is called the standard basis.

Notice that writing a vector b in \mathbb{R}^n in coordinates relative to a basis for \mathbb{R}^n comes down to solving a matrix-vector equation Ax = b, where A is the matrix whose columns are the given basis vectors. Since the columns of A are a basis for \mathbb{R}^n , A is invertible. Thus the inverse matrix A^{-1} is changes coordinates from the standard basis for \mathbb{R}^n to a given basis, since $A^{-1}b$ yields the coordinate vector for b with respect to the columns of A. The linear transformation $b \mapsto A^{-1}b$ is the coordinate mapping mentioned above. On the other hand, the matrix A changes coordinates from a given basis to the standard basis for \mathbb{R}^n .

(In the text, the coordinate vector for a vector v with respect to a basis \mathcal{B} is denoted $[v]_{\mathcal{B}}$. The matrix that changes coordinates from \mathcal{B} to the standard basis in \mathbb{R}^n is called the *change-of-coordinates matrix* and denoted $P_{\mathcal{B}}$. What we have observed is that $v = P_{\mathcal{B}}[v]_{\mathcal{B}}$.)

Example Find the matrix that changes coordinates from the standard basis for \mathbb{R}^2 to the basis $\mathcal{B} = \{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 2\\5 \end{bmatrix} \}$. Use this matrix to write $v = \begin{bmatrix} 0\\-1 \end{bmatrix}$ and $w = \begin{bmatrix} 2\\3 \end{bmatrix}$ in coordinates relative to \mathcal{B} .

The matrix that changes coordinates from the standard basis to \mathcal{B} is

$$P_{\mathcal{B}}^{-1} = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}^{-1} = \frac{1}{5-2} \begin{bmatrix} 5 & -2 \\ -1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 5 & -2 \\ -1 & 1 \end{bmatrix}$$

Thus the coordinate vector for v with respect to \mathcal{B} is

$$\begin{bmatrix} v \end{bmatrix}_{\mathcal{B}} = \frac{1}{3} \begin{bmatrix} 5 & -2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 8/3 \\ -1/3 \end{bmatrix}$$

The coordinate vector for w with respect to \mathcal{B} is

$$[w]_{\mathcal{B}} = \frac{1}{3} \begin{bmatrix} 5 & -2\\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2\\ 3 \end{bmatrix} = \begin{bmatrix} 4/3\\ 1/3 \end{bmatrix}$$

Example Suppose that a vector v, in coordinates relative to \mathcal{B} , the basis for \mathbb{R}^2 in the previous example, is $[v]_{\mathcal{B}} = (-4, 5)$. What is v relative to the standard basis for \mathbb{R}^2 ?

In this case, we simply multiply the coordinate vector by the matrix whose columns are the basis elements:

$$v = P_{\mathcal{B}} \begin{bmatrix} v \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} -4 \\ 5 \end{bmatrix} = \begin{bmatrix} 6 \\ 9 \end{bmatrix}$$

2.3 The Coordinate Mapping as an Isomorphism

As mentioned above, if a vector space V has a finite basis $\{u_1, \ldots, u_n\}$, we can associate vectors in V to vectors in \mathbb{R}^n using the coordinate mapping. Observe that:

- 1. Given a vector $w = (c_1, \ldots, c_n)$ in \mathbb{R}^n , the vector $v = c_1 u_1 + \ldots + c_n u_n$ in V will be mapped to w under the coordinate mapping.
- 2. Since two vectors in V that have the same coordinates relative to $\{u_1, \ldots, u_n\}$ are equal, this vector v in V, whose coordinate vector is w in \mathbb{R}^n , is unique.

Thus there is a one-to-one correspondence between vectors in V and vectors in \mathbb{R}^n .

Example Consider the coordinate vector (1, -2, 3, -4) in \mathbb{R}^4 . Clearly the polynomial $P(x) = x - 2x + 3x^2 - 4x^3$ is the unique polynomial in \mathbb{P}_3 whose coordinates relative to the standard basis for \mathbb{P}_3 are 1, -2, 3, and -4, respectively.

Observe that scaling P by a real number results in a polynomial whose coordinate vector (w.r.t. the std. basis for \mathbb{P}_3) is scaled by the same number.

$$5 \cdot P(x) = 5 - 10x + 15x^2 - 20x^3 \longrightarrow (5, -10, 15, -20) = 5(1, -2, 3, -4)$$

Now consider also $Q(x) = 2 + 3x - x^2 + x^3$ in \mathbb{P}_3 , whose coordinate vector relative to the standard basis for \mathbb{P}_3 is (2, 3, -1, 1). Notice that adding P and Q results in a polynomial whose coordinate vector is the sum of the coordinate vectors of P and Q.

$$P(x) + Q(x) = 3 + x + 2x^2 - 3x^3 \quad \longrightarrow \quad (3, 1, 2, -3) = (1 + 2, -2 + 3, 3 - 1, -4 + 1)$$

Generalizing this, we can see that the coordinate mapping is a linear transformation, since: (1) scaling a vector in V scales the weights occuring in the expression for v as a linear combination of basis vectors, which exactly corresponds to scaling the coordinate vector in \mathbb{R}^n , and (2) adding two vectors in V adds their weights with respect to the given basis, which exactly corresponds to adding coordinate vectors in \mathbb{R}^n .

Thus, the coordinate mapping from V to \mathbb{R}^n , given by $v \to [v]_{\mathcal{B}}$, where \mathcal{B} is a basis of n vectors for V, is an *isomorphism*, i.e. a one-to-one and onto linear transformation. This means that V and \mathbb{R}^n have exactly the same structure as vector spaces.

In particular, this means that we can again use row reduction to determine whether vectors (in a vector space with a *finite* basis) are linearly independent!

Example Determine whether the following polynomials are linearly independent in \mathbb{P}_3 :

$$P(x) = 1 - 2x^{2} - x^{3}$$
$$Q(x) = x + 2x^{3}$$
$$R(x) = 1 + x - 2x^{2}$$

The coordinate vectors for P(x), Q(x), and R(x) with respect to the standard basis for \mathbb{P}_3 are

$$P(x) \to (1, 0, -2, -1) Q(x) \to (0, 1, 0, 2) R(x) \to (1, 1, -2, 0)$$

These vectors in \mathbb{R}^4 are linearly independent if and only if the homogeneous matrix equation Ax = 0 has only the trivial solution, where A is the matrix whose columns are the given vectors.

1	0	1]		[1	0	1		[1	0	1]
0		1		0	1	1		0	1	1
-2	0	-2		0	$\begin{array}{c} 1 \\ 0 \end{array}$	0	\rightarrow	0	0	-1
		0			2			0	0	$\begin{bmatrix} 1\\ 1\\ -1\\ 0 \end{bmatrix}$

Since there is a pivot in every column, the columns of A are linearly independent as vectors in \mathbb{R}^4 . Thus the three polynomials are linearly independent in \mathbb{P}_3

How would we justify this rigorously? Well, recall that in your homework (4.3 #31-32), you showed that if $T: V \to W$ is a one-to-one linear transformation of vector spaces and $\{v_1, \ldots, v_p\}$ is a set of vectors in V, then $\{v_1, \ldots, v_p\}$ is linearly independent in V if and only if $\{T(v_1), \ldots, T(v_p)\}$ is linearly independent in W.

Note that if T is also onto $\{v_1, \ldots, v_p\}$ spans V if and only if $\{T(v_1), \ldots, T(v_p)\}$ spans W. It is worth thinking about why this is true.