1 Overview

Main ideas:

- 1. inner product (dot product) on \mathbb{R}^n , properties
- 2. length (norm) of a vector, unit vector, distance between two vectors
- 3. orthogonality, pythagorean theorem, angles in \mathbb{R}^2 and \mathbb{R}^3
- 4. the orthogonal complement to a subspace; theorem regarding complementarity of row space and null space

Examples in text:

- 1. compute $u \cdot v$ and $v \cdot u$ for u, v in \mathbb{R}^3
- 2. compute unit vector for a vector in \mathbb{R}^4
- 3. unit vector in a basis
- 4. distance between two vectors in \mathbb{R}^3
- 5. orthogonal complement to a plane through the origin in \mathbb{R}^3

2 Discussion and Worked Examples

2.1 Definitions and Basic Properties

The inner product (or scalar product or dot product) on \mathbb{R}^n is the key to defining distance and perpendicularity in \mathbb{R}^n . An abstract vector space may or may not have an analogue of the dot product in \mathbb{R}^n . (But since every finite dimensional vector space is isomorphic to some \mathbb{R}^n , every finite dimensional vector space will have a dot product by "carrying over" the dot product on \mathbb{R}^n .)

Since vectors in \mathbb{R}^n can be viewed as $1 \times n$ matrices, the *inner product*, denoted $\langle u, v \rangle$, or *dot product*, denoted $u \cdot v$, of two vectors in \mathbb{R}^n can be defined as the matrix product $u^T v$. In coordinates:

$$\langle u, v \rangle = u \cdot v = u^T v = \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

The length (norm) of a vector is $||u|| = \langle u, u \rangle^{1/2} = \sqrt{u \cdot u}$. The unit vector \hat{u} pointing in the same direction as u is $\hat{u} = u/||u||$. The distance between two vectors u and v is ||u - v||. (This is the usual distance formula: the square root of the sum of the squares of the differences of the coordinates.)

Two vectors are *orthogonal* if their dot product is zero. This coincides with the notion of perpendicularity of vectors in the plane. The Pythagorean Theorem, from a vector viewpoint, states that

u and v are orthogonal $\iff ||u+v||^2 = ||u||^2 + ||v||^2$

The inner product on \mathbb{R}^n can be characterized by the following three properties:

- positive definiteness: $\langle u, u \rangle \geq 0$, for all u in \mathbb{R}^n and $\langle u, u \rangle = 0$ if and only if u = 0.
- symmetry: $\langle u, v \rangle = \langle v, u \rangle$, for all u, v in \mathbb{R}^n
- bilinearity:
 - (i) $\langle cu, v \rangle = \langle u, cv \rangle = c \langle u, v \rangle$, for all u, v in \mathbb{R}^n and all scalars c
 - (ii) $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$ and $\langle u + w, v \rangle = \langle u, v \rangle + \langle w, v \rangle$ for all u, v, w in \mathbb{R}^n

2.2 The Orthogonal Complement to a Subspace

Suppose W is a plane through the origin in \mathbb{R}^3 . Consider the set of vectors that are orthogonal to W, i.e. the line through the origin that is perpendicular to the plane. This set called the *orthogonal complement* of W, denoted W^{\perp} (pronounced "W perp").

In general, if W is a subspace of \mathbb{R}^n , then

 $W^{\perp} = \{ v \text{ in } \mathbb{R}^n : \langle v, w \rangle = 0 \text{ for all } w \text{ in } W \}$

It is fairly straightforward (and part of your homework) to show that:

- 1. $W \cap W^{\perp} = \{0\}$
- 2. W^{\perp} is a subspace of \mathbb{R}^n
- 3. If S is a spanning set for W, then v is in W^{\perp} if and only if v is orthogonal to every vector in S.

Further, in \mathbb{R}^n (and other finite dimensional vector spaces that have an inner product) the orthogonal complement of the orthogonal complement of a subspace is the original subspace, i.e.

$$\left(W^{\perp}\right)^{\perp} = W$$

for any subspace W of \mathbb{R}^n .

Example Describe the orthogonal complement of

$$W = \text{Span} \left\{ \begin{bmatrix} 4\\-4\\1\\-1\\0\\3 \end{bmatrix}, \begin{bmatrix} 5\\-5\\1\\-1\\-1\\1\\2 \end{bmatrix}, \begin{bmatrix} 2\\-2\\0\\0\\1\\0\\1\\0 \end{bmatrix} \right\}$$

It suffices to describe the set of vectors that are orthogonal to the vectors in the spanning set. So a vector $x = (x_1, x_2, x_3, x_4, x_5, x_6)$ is in W^{\perp} if and only if

i.e.

$$\begin{bmatrix} 4 & -4 & 1 & -1 & 0 & 3 \\ 5 & -5 & 1 & -1 & 1 & 2 \\ 2 & -2 & 0 & 0 & 1 & 0 \end{bmatrix} x = 0$$

Thus W^{\perp} is the null space of the matrix whose rows are the vectors in the spanning set.

Theorem. The orthogonal complement to the null space of a matrix A is the row space of A (i.e. the column space of A^T).

$$(\operatorname{null} A)^{\perp} = \operatorname{col}(A^T) = \operatorname{row} A$$

Proof. We will prove the following equivalent statement: $\operatorname{null} A = (\operatorname{row} A)^{\perp}$. A vector v is in $\operatorname{null} A$ if and only if Av = 0, i.e. the dot products of the rows of A with v are all zero, i.e. v is orthogonal to the rows of A, considered as vectors. Since the rows of A are a spanning set for the row space of A, this is equivalent to v being in the orthogonal complement of $\operatorname{row} A$.