
Math 240, 6.5 Least-squares Problems A. DeCelles

1 Overview

Main ideas:

1. definition of a least-squares solution of a (not necessarily consistent) system and least-squares error

2. general procedure for finding a least squared solution

3. criteria for uniqueness of least-squares solution

4. finding a least-squares solution of Ax = b when the columns of A are orthogonal

5. (finding a least-squares solution using a QR factorization–omit)

Examples in text:

1. find a least-squares solution of an inconsistent system

2. find the general form of a least-squares solution for an inconsistent system

3. determine the least squared error of a least-squares solution

4. find a least-squares solution of a system Ax = b where the columns of A are othogonal

5. (find a least-squares solution using a QR factorization)

2 Discussion and Worked Examples

2.1 Finding an Approximate Solution to an Inconsistent System of Equations

When a system of equations is created to model observed phenomena, there is a possibility that the system
is inconsistent, due to measurement error. In such a case, it is useful to find an approximate solution.

Suppose A is an m× n matrix and b a vector in Rm such that Ax = b is inconsistent. We wish to find x̃ in
Rn such that

‖b−Ax̃‖ ≤ ‖b−Ax‖ for all x in Rn

i.e. the distance between Ax̃ and b is less than or equal to the distance between Ax and b for any vector x
in Rn. In this case, x̃ is called a least-squares solution and the distance between Ax̃ and b is called the
least-squares error.

(Do we know that such a vector exists? If it does exist, will it be unique??)

A reformulation allows us to use the results we have proven in the last couple of sections. The
inconsistency of Ax = b means that b is not in the column space of A. We wish to find the vector Ax in the
column space of A that is closest to b. By the Best Approximation Theorem, this is the projection of b
onto colA. Thus the least-squares solution is the solution to the equation Ax = projcolAb. This system is
certainly consistent, since projcolAb is in the column space of A. However, A is not necessarily invertible
(not even necessarily square) so the solution may not be unique.

Example Find a least-squares solution (and the least-squares error) to Ax = b, where

A =

 2 1
−2 2
2 1

 b =

−5
8
1


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The columns of A are clearly linearly independent and actually orthogonal. Further b does not lie in the
column space of A. We want to find a vector x̃ in R2 such that Ax̃ is the projection of b onto colA. Since
we have an orthogonal basis for the column space of A, we can easily compute the projection

projcolAb = −24

12

 2
−2
2

 +
12

6

1
2
1

 =

−4
4
−4

 +

2
4
2

 =

−2
8
−2


Now we solve the system Ax = projcolAb. 2 1 −2

−2 2 8
2 1 −2

 → . . . →

1 0 −2
0 1 2
0 0 0


So the solution is x̃ = (−2, 2). Can you see how we should have known this without looking at the
augmented matrix and row reducing?

Now we find the least-squares error by computing the distance between Ax̃ and b.

Ax̃− b =

−2
8
−2

 −
−5

8
1

 =

 3
0
−3


So the least-squares error is ‖Ax̃− b‖ = 3

√
2.

This example worked out very nicely because the columns of A were orthogonal. If the columns of A are
not orthogonal, it is not as easy to compute the projection of b onto the column space of A. We next
discuss a more general way of finding a least-squares solution that does not rely on having an orthogonal
basis for the column space of A.

2.2 General Procedure for Obtaining a Least-squares Solution

As in the previous section, assume that A in an m× n matrix and b is a vector in Rm, not necessarily in
the column space of A. We aim to find a vector x̃ in Rn such that Ax̃ is a best approximation (in the
column space of A) to b. In other words we want to solve Ax = projcolAb.

When we do not have an orthogonal basis for the column space of A, we cannot directly compute the
projection of b onto the column space of A. However, we can characterize the projection vector. It is the
unique vector Ax in the column space of A such that b−Ax is in (colA)⊥. Since (colA)⊥ = nullAT ,

b−Ax in (colA)⊥ ⇔ b−Ax in nullAT ⇔ AT (b−Ax) = 0 ⇔ AT b = AT (Ax)

Thus we simply need to solve the equation (ATA)x = (AT b).

Example Find a least-squares solution (and the least-squares error) to Ax = b, where

A =

 2 1
−2 0
2 3

 b =

−5
8
1


We will solve the equation (ATA)x = (AT b). Well,

ATA =

[
2 −2 2
1 0 3

] 2 1
−2 0
2 3

 =

[
12 8
8 10

]
and AT b =

[
2 −2 2
1 0 3

]−5
8
1

 =

[
−24
−2

]
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So we set up the augmented matrix and row reduce[
12 8 −24
8 10 −2

]
−→ . . . −→

[
1 0 −4
0 1 3

]
Thus (−4, 3) is the unique solution, thus x̃ = (−4, 3). (Notice that since ATA is a 2× 2 invertible matrix
we could also have computed (ATA)−1(AT b).) Now we find the least-squares error, ‖b−Ax̃‖.

b−Ax̃ =

−5
8
1

 −
 2 1
−2 0
2 3

[−4
3

]
=

−5
8
1

 −
−5

8
1

 =

0
0
0


Thus the least-squares error is zero. What does this mean? This means that b is actually in the column
space of A, so x̃ is an exact solution!

Example Find all least-squares solutions (and the least-squares error) to Ax = b where

A =


1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1

 b =


7
2
3
6
5
4


We need to solve (ATA)x = AT b, so we compute:

ATA =

 1 1 1 1 1 1
1 1 1 0 0 0
0 0 0 1 1 1




1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1

 =

 6 3 3
3 3 0
3 0 3



AT b =

 1 1 1 1 1 1
1 1 1 0 0 0
0 0 0 1 1 1




7
2
3
6
5
4

 =

 27
12
15



Thus we row reduce  6 3 3 27
3 3 0 12
3 0 3 15

 −→ . . . −→

 1 0 1 5
0 1 −1 −1
0 0 0 0


The solutions of (ATA)x = AT b are of the form:

x =

−x3 + 5
x3 − 1
x3

 =

 5
−1
0

 + x3

−1
1
1


Thus the general least-squares solution of Ax = b has the form

x̃ =

 5
−1
0

 + t

−1
1
1

 for t in R
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To find the least-squares error, first compute Ax̃ and b−Ax̃

Ax̃ =


1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1


5− t
t− 1
t

 =


4
4
4
5
5
5

 b−Ax̃ =


7
2
3
6
5
4

 −


4
4
4
5
5
5

 =


3
−2
−1
1
0
−1


Thus the least-squared error is

‖b−Ax̃‖ =
√

9 + 4 + 1 + 1 + 0 + 1 = 4

2.3 Uniqueness of Least-squared Solutions

Recall our two characterizations of least-squared solutions: a least-squared solution to a system Ax = b is a
solution to

Ax = projcolAb or equivalently (ATA)x = (AT b)

From the first characterization, it is clear that a least-squared solution always exists, regardless of what b
is, (because the projection of b onto colA is in colA), and the solution will be unique if and only if the
columns of A are linearly independent. Now look at the second characterization. Since the matrix ATA is
square, the second equation has a unique solution (regardless of what b is) if and only if ATA is invertible.
In this case, the solution is clearly (ATA)−1AT b. Thus we have outlined the proof of the following theorem:

Theorem. Let A be an m× n matrix. Then the following are equivalent:

1. The system Ax = b has a unique least-squares solution for all b in Rm.

2. The columns of A are linearly independent.

3. The matrix ATA is invertible.

When a system has a unique least-squares solution the solution is given by

x̃ = (ATA)−1AT b
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