Math 240, 6.5 Least-squares Problems A. DeCelles

1 Overview

Main ideas:
1. definition of a least-squares solution of a (not necessarily consistent) system and least-squares error
2. general procedure for finding a least squared solution
3. criteria for uniqueness of least-squares solution
4. finding a least-squares solution of Ax = b when the columns of A are orthogonal
5. (finding a least-squares solution using a QR factorization—omit)
Examples in text:
1. find a least-squares solution of an inconsistent system
2. find the general form of a least-squares solution for an inconsistent system
3. determine the least squared error of a least-squares solution
4. find a least-squares solution of a system Ax = b where the columns of A are othogonal

5. (find a least-squares solution using a QR factorization)

2 Discussion and Worked Examples

2.1 Finding an Approximate Solution to an Inconsistent System of Equations

When a system of equations is created to model observed phenomena, there is a possibility that the system
is inconsistent, due to measurement error. In such a case, it is useful to find an approximate solution.

Suppose A is an m x n matrix and b a vector in R™ such that Az = b is inconsistent. We wish to find Z in
R™ such that
IIb—Az| < ||b— Az| for all z in R"

i.e. the distance between AZ and b is less than or equal to the distance between Az and b for any vector x
in R™. In this case, Z is called a least-squares solution and the distance between AZ and b is called the
least-squares error.

(Do we know that such a vector exists? If it does exist, will it be unique??)

A reformulation allows us to use the results we have proven in the last couple of sections. The
inconsistency of Az = b means that b is not in the column space of A. We wish to find the vector Az in the
column space of A that is closest to b. By the Best Approximation Theorem, this is the projection of b
onto col A. Thus the least-squares solution is the solution to the equation Ax = proj,, 40. This system is
certainly consistent, since proj.,;4b is in the column space of A. However, A is not necessarily invertible
(not even necessarily square) so the solution may not be unique.

Example Find a least-squares solution (and the least-squares error) to Az = b, where

2 1 -5
A = |2 2 b=18
2 1 1
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The columns of A are clearly linearly independent and actually orthogonal. Further b does not lie in the
column space of A. We want to find a vector & in R? such that AZ is the projection of b onto colA. Since
we have an orthogonal basis for the column space of A, we can easily compute the projection

2 1 —4 2 -2
24 12
projcolAb = _E —2 + F 2 = 4 + 4 = 8
2 1 —4 2 —2
Now we solve the system Az = proj.,;4b.

2 1 -2 1 0 -2

-2 2 8| - ... - (001 2

2 1 -2 0 0 O

So the solution is & = (—2,2). Can you see how we should have known this without looking at the
augmented matrix and row reducing?

Now we find the least-squares error by computing the distance between AZ and b.

-2 -5 3
Az —b = 8| — | 8 = 0
—2 1 -3

So the least-squares error is |AZ — b|| = 3v/2.

This example worked out very nicely because the columns of A were orthogonal. If the columns of A are
not orthogonal, it is not as easy to compute the projection of b onto the column space of A. We next
discuss a more general way of finding a least-squares solution that does not rely on having an orthogonal
basis for the column space of A.

2.2 General Procedure for Obtaining a Least-squares Solution

As in the previous section, assume that A in an m x n matrix and b is a vector in R™, not necessarily in
the column space of A. We aim to find a vector Z in R™ such that AZ is a best approximation (in the
column space of A) to b. In other words we want to solve Az = proj., 4b-

When we do not have an orthogonal basis for the column space of A, we cannot directly compute the

projection of b onto the column space of A. However, we can characterize the projection vector. It is the
unique vector Az in the column space of A such that b — Az is in (colA)L. Since (cold)+ = nullAT,

b— Az in (cold)t & b— Az innullAT & AT(b—-Az)=0 < ATb= AT (Ax)
Thus we simply need to solve the equation (AT A)x = (ATb).

Example Find a least-squares solution (and the least-squares error) to Az = b, where

2 1 -5
A= [-2 0 b=1]8
2 3 1

We will solve the equation (AT A)x = (ATb). Well,

2 1 —5
v 2 =2 2]|° 12 8 v 2 -2 2 [
AT = [1 0 3} 22 g - {8 10} and - ATh = [1 0 3} f - {2]
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So we set up the augmented matrix and row reduce

§ 10 -2

12 8 —-24
01 3

RS

Thus (—4,3) is the unique solution, thus # = (—4,3). (Notice that since AT A is a 2 x 2 invertible matrix
we could also have computed (AT A)~1(ATb).) Now we find the least-squares error, ||b — AZ||.

-5 2 1], -5 -5 0
b—AF = [8| - |-2 0 [3] = |8 - 1]8] = |0
1 2 3 1 1 0

Thus the least-squares error is zero. What does this mean? This means that b is actually in the column
space of A, so T is an exact solution!

Example Find all least-squares solutions (and the least-squares error) to Az = b where

1 1 0 7
1 1 0 2
1 1 0 3
4= 1 0 1 b= 6
1 0 1 5
1 0 1 4
We need to solve (AT A)x = ATb, so we compute:
1 1 0
1 11 1 11 } 1 8 6 3 3
ATA = |1 11 0 0 0 Lo1l =1330
0 00 1 11 10 1 3 0 3
1 0 1
7
2
111111 3 27
ATb = |1 1.1 .0 0 0 6| =112
0 00 111 5 15
4
Thus we row reduce
6 3 3 27 1 0 1 5
3 3 0 12 — ... — 01 -1 -1
3 0 3 15 0 0 O 0
The solutions of (AT A)z = ATb are of the form:
—x3+5 5 -1
T = 3 —1 = |[=1| 4+ z23| 1
T3 0 1
Thus the general least-squares solution of Az = b has the form
5 -1
T = |-1| +t]|1 for tin R
0 1
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To find the least-squares error, first compute AZ and b — AZ

1 1 0 4 7 4 3

110 4 2 4 —2

- 1 1 0 4 N 3 4 —1

Az = 10 1 t;l = 5 b— Az = 6 — 5 = 1

1 0 1 5 5 5 0

1 0 1 5 4 5 -1

Thus the least-squared error is
|b—AZ|| = VOI+4+1+1+0+1 = 4

2.3 Uniqueness of Least-squared Solutions

Recall our two characterizations of least-squared solutions: a least-squared solution to a system Ax = b is a
solution to
Az = pProj.,ab or equivalently (ATA)z = (ATb)

From the first characterization, it is clear that a least-squared solution always exists, regardless of what b
is, (because the projection of b onto colA is in colA), and the solution will be unique if and only if the
columns of A are linearly independent. Now look at the second characterization. Since the matrix AT A is
square, the second equation has a unique solution (regardless of what b is) if and only if AT A is invertible.
In this case, the solution is clearly (AT A)~*ATh. Thus we have outlined the proof of the following theorem:

Theorem. Let A be an m x n matriz. Then the following are equivalent:
1. The system Ax = b has a unique least-squares solution for all b in R™.
2. The columns of A are linearly independent.
3. The matriz AT A is invertible.

When a system has a unique least-squares solution the solution is given by

T = (ATA)1ATH



