
Math 240, 4.3 Linear Independence; Bases A. DeCelles

1 Overview

Main ideas:

1. definitions of linear independence, linear dependence, dependence relation, basis

2. characterization of linearly dependent set using linear combinations (thm 4)

3. paring down a spanning set to find a basis (thm 5)

4. bases for the null space and column space of a matrix (thm 6)

5. basis is minimal spanning set and maximal linearly independent subset

Examples in text:

1. linearly dependent set in P

2. linearly independent and dependent sets in C[0, 1], the vsp of continuous functions on [0, 1]

3. columns of an invertible matrix

4. standard basis for Rn

5. determine whether three vectors in R3 are a basis for R3

6. standard basis for Pn

7. find a basis for the subspace spanned by a given set

8. find a basis for the column space of a matrix in rref

9. find a basis for the column space of a matrix not in rref

10. enlarging a linearly independent set to a basis and beyond

2 Discussion and Worked Examples

2.1 Linear Independent Sets and Spanning Sets in Rn

(Warm-up: For each set of vectors in R2, determine whether the set is linearly independent and describe
the span.)

Two Observations (1) Two vectors in R2 that do not lie on the same line span the whole plane. (2) A
set of three or more vectors in R2 is always linearly dependent.

Let’s take some time to recap the arguments for why these facts are true. Let {v1, . . . , vn} be a set of n
vectors in Rm, and let A be the matrix whose columns are the vectors v1, . . . , vn. Then

{v1, . . . , vn} spans Rm ⇐⇒ Ax = b is consistent for all b in Rm ⇐⇒ A has a pivot in every row

{v1, . . . , vn} is lin. indep. ⇐⇒ Ax = 0 has only the trivial solution ⇐⇒ A has a pivot in every col.
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When n = m, A has the same number of rows and columns, so if it has a pivot in every row, it must have a
pivot in every column, and vice versa. Thus

{v1, . . . , vn} spans Rn ⇐⇒ Ax = b is consistent for all b in Rn ⇐⇒ A has a pivot in every row

m (n = m)

{v1, . . . , vn} is lin. indep. ⇐⇒ Ax = 0 has only the trivial solution ⇐⇒ A has a pivot in every col.

Thus a set of n vectors in Rn spans Rn if and only if it is linearly independent.

Also, notice that any set of n vectors in Rm (with n > m) is linearly dependent, because if A has more
columns than rows, it cannot have a pivot in every column.

Further, a set of n vectors in Rm (with n < m) cannot span Rm, because if A has more rows than columns,
it cannot have a pivot in every row.

A linearly independent spanning set for Rn is called a basis for Rn. What we have observed in the plane
and proven in Rn is that:

- Any linearly independent set of exactly n vectors in Rn is a basis for Rn.

- Any spanning set for Rn that has exactly n vectors is a basis for Rn.

- A basis for Rn cannot have more than n vectors (or it would be linearly dependent) and cannot have
less than n vectors (or it would not span). Thus a basis for Rn has exactly n vectors.

Note The columns of an n× n invertible matrix form a basis for Rn, by the Invertible Matrix Theorem.

Note Given a linearly independent set in Rn that does not span Rn, we can add new vectors to make a
basis. Similarly, given a linearly dependent spanning set in Rn, we can remove vectors to make a basis.

Example For each of the sets of vectors in R2 above, either add or remove vectors to make a basis.

In order to define a basis for an abstract vector space we need an abstract notion of linear independence.

2.2 Linear Independent Sets and Bases in an Abstract Vector Space

Definition Let {v1, v2, . . . , vp} be a subset of a vector space V . The set is linearly dependent if there are
weights c1, c2, . . . , cp, some of which may be zero, but not all, such that

c1v1 + c2v2 + . . . + cpvp = 0

Otherwise the set is linearly independent: the only set of weights c1, c2, . . . , cp satisfying

c1v1 + c2v2 + . . . + cpvp = 0

is the set of all zero weights c1 = c2 = · · · = cp = 0.
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A set consisting of just one vector is linearly dependent if and only if it is the set consisting of the zero
vector. A set of more than one vector is linearly dependent if and only if one of the vectors can be written
as a linear combination of the others. (This is Theorem 4 in the text.)

Note Recall that in Rn a set of vectors is linearly independent if and only if the homogeneous equation
Ax = 0 has only the trivial solution, where A is the matrix whose columns consist of the vectors in the
specified set of vectors. However, for an abstract vector space, we may not be able to write vectors as
columns of a matrix.

Example Consider the following polynomials in P and determine whether they are linearly dependent or
independent:

P (x) = 2 Q(x) = x2 R(x) = x2 + 1

Example The functions sin(x) and cos(x) are linearly independent in the vsp of functions on R, but the
functions sin(2x) and sin(x) cos(x) are linearly dependent, since

sin(2x) = 2 sin(x) cos(x)

Definition A linearly independent spanning set of a vector space V is called a basis for V . (The plural of
“basis” is “bases.”)

The standard basis for Rn is {e1, e2, . . . , en}:
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The standard basis for Pn is {1, x, x2, . . . , xn}. Certainly any polynomial with real coefficients of degree
d ≤ n can be written as a linear combination of these monomials. The fact that they are linearly
independent is also clear, because all of the coefficients of the zero polynomial are zero.

As in Rn, a spanning set for a vector space V that is linearly dependent can be “pared down” to a basis for
V , by removing vectors that can be written as linear combinations of previous vectors in the spanning set,
and a linearly independent set that does not span V can be “beefed up” to a basis for V by adding vectors
to the set that are linearly independent.
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add vectors
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In this sense, a basis is a minimal spanning set and a maximal linearly independent set.

3



Math 240, 4.3 Linear Independence; Bases A. DeCelles

2.3 Bases for the Null Space and the Column Space of a Matrix

Recall that row reduction can be described in terms of multiplication by elementary matrices.

A → E1A → . . . → Er . . . E1 A (rref)

Let Arref denote the reduced row echelon form of A. If Ax = 0, then Arref x = Er . . . E1(Ax) = 0. On the
other hand, if Arref x = 0, then (Er . . . E1)Ax = 0 and thus Ax = (Er . . . E1)−1(0) = 0, since elementary
matrices are invertible. Thus

Ax = 0 ⇐⇒ Arref x = 0

This key observation allows us to determine bases for the null space and the column space of a matrix from
the reduced row echelon form of the matrix.

Example Find bases for the null spaces and column spaces of the matrices A and B, which are given
below along with their reduced row echelon forms.

A =


1 2 1 3 1

−1 1 2 5 4

2 −1 −3 1 2

3 4 1 1 −3

 Arref =


1 0 −1 0 0

0 1 1 0 −1

0 0 0 1 1

0 0 0 0 0



B =


1 2 1 3 1

−1 1 2 5 4

2 −1 −3 1 2

3 4 1 1 2

 Brref =


1 0 −1 0 0

0 1 1 0 0

0 0 0 1 0

0 0 0 0 1


Since Ax = 0 if and only if Arref x = 0, the null space of a matrix is the same as the null space of its
reduced row echelon form. Recall that an explicit description for the null space of a matrix is obtained by
writing the solution set for the associated homogeneous equation in parametric vector form. A vector x is
in the null space of A if and only if it is of the form

x =
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x3
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Thus the null space is spanned by the vectors v = (1,−1, 1, 0, 0) and u = (0, 1, 0,−1, 1). Notice that these
two vectors are linearly independent, since, if cv + du = 0, then
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and, in particular, this implies that c = 0 and d = 0. Recall that whenever we obtain a spanning set for the
null space of a matrix from the reduced row echelon form of the matrix, the spanning set will be linearly
independent. In other words, this procedure always yields a basis for the null space of the original matrix.

Similarly, to find a basis for the null space of B, we write the solution set for Bx = 0 in parametric vector
form. A vector x is a solution to Bx = 0 if and only if

x =



x3

−x3

x3

0

0


= x3



1

−1

1

0

0


Thus a basis for the null space of B is {(1,−1, 1, 0, 0)}.

Recall that the column space of A is the span of the columns of A. Thus, for a given matrix A, we already
have a spanning set for the column space of A, namely the columns of A. However, the columns may be
linearly dependent, in which case we need to remove some of the vectors to obtain a linearly independent
spanning set, i.e. a basis.

Recall that we can interpret the matrix-vector product Ax as a linear combination of the columns of A,
where the entries of x are the weights in the linear combination. The columns of A are linearly
independent if and only if the only way to weight the columns of A to get the linear combination to equal
zero is to have all the weights be zero, i.e. the only solution to Ax = 0 is the zero vector x = 0. We can tell
from the reduced row echelon form of A whether there are nontrivial solutions to Ax = 0, since Ax = 0 if
and only if Arref x = 0.

Looking at the matrices A and B above, it is clear that Ax = 0 and Bx = 0 both have nontrivial solutions.

If the columns of a matrix A are linearly dependent, each nonzero vector x such that Ax = 0 gives a
dependency relation among the columns of A. Since Ax = 0 if and only if Arref x = 0, the dependency
relations among the columns of A are the same as the dependency relations among the columns of Arref.
For example, if the third column of Arref is a linear combination of the first and second columns of Arref,
then the third column of A is a linear combination of the first and second columns of A.

Look at the matrix Arref above. Notice that the third column is a linear combination of the first two
columns and the fifth column is a linear combination of the second and fourth columns. Thus the third
column and the fifth columns are “redundant” in the following sense: the span of columns of Arref is the
same as the span of the first, second, and fourth columns of Arref. Since the first, second, and fourth
columns are linearly independent, and they span the column space of Arref, they are a basis for the column
space of Arref.

Since the dependency relations for the columns of A are the same as the dependency relations of the
columns of Arref, the third column of A is a linear combination of the first and second columns and the
fifth column of A is a linear combination of the second and fourth columns of A. Thus the first, second,
and fourth columns of A, 
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form a basis for the column space of A.

Similarly, since the third column of Brref is a linear combination of the first and second columns of Brref,
we may remove it from the spanning set without changing the span. The remaining four columns are
linearly independent, so form a basis for the column space of Brref. Thus the first, second, fourth, and fifth
columns of B, 
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form a basis for the column space of B.

Summary:

1. To find a basis for the null space of a matrix A:

Find Arref, write the solution set to Arref x = 0 in parametric vector form, using the free
variables as the parameters. The spanning set for the null space obtained in this way is a basis.

2. To find a basis for the column space of a matrix A:

The columns of A are a spanning set for the column space of A. To determine which columns to
remove in order to ensure linear independence, find Arref. If any columns of Arref are linear
combinations of previous columns, remove the corresponding columns of A from the spanning
set. The resulting spanning set will be a basis.
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