1 Overview

Main ideas in 2.2:

- 1. terminology: invertible matrix, inverse of a matrix, singular matrix, nonsingular matrix
- 2. criterion for invertibility of 2×2 matrix, formulae for inverse and determinant of 2×2 matrix
- 3. perspective on existence and uniqueness question
- 4. properties of inverses
- 5. elementary matrices, characterization of invertible $n \times n$ matrices, algorithm for finding inverse of $n \times n$ matrix

Main ideas in 2.3:

- 1. invertible matrix theorem
- 2. invertible linear transformations

Examples in 2.2:

- 1. verify inverse of 2×2 matrix
- 2. find inverse of 2×2 matrix
- 3. application: flexibility matrix, stiffness matrix
- 4. use inverse matrix to solve linear system
- 5. products with elementary matrices
- 6. inverse of elementary matrix
- 7. algorithm for finding inverse matrix

Examples in 2.3

- 1. determine if a matrix is invertible
- 2. characterize one-to-one linear transformation from $\mathbb{R}^n \to \mathbb{R}^n$

2 Discussion and Worked Examples

Inverse of a 2×2 matrix:

If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 is invertible, $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

The quantity ad - bc is called the determinant of A and is denoted det A. A matrix A is invertible if and only if det $A \neq 0$.

Example Find the inverse of $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, and verify that $AA^{-1} = A^{-1}A = \mathbb{I}_2$.

According to the formula, $A^{-1} = -\frac{1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$. I will leave the matrix multiplication to you.

(Recap) existence and uniqueness questions from the four perspectives:

- 1. system of m linear equations in n unknowns, augmented matrix as shorthand
- 2. linear combinations of n vectors in \mathbb{R}^m
- 3. matrix-vector equation $(m \times n \text{ matrix})$
- 4. linear transformations $(\mathbb{R}^m \to \mathbb{R}^n)$

Four equivalences when n = m.

- 1. all rows of coefficient matrix are pivot rows \Leftrightarrow all columns of coefficient matrix are pivot columns
- 2. any vector in \mathbb{R}^n can be written as a linear combination of specified set of n vectors \Leftrightarrow the specified set of vectors is linearly independent
- 3. the columns of the matrix span $\mathbb{R}^n \Leftrightarrow$ the homogeneous equation Ax = b has no nontrivial solutions
- 4. linear transformation is one-to-one \Leftrightarrow linear transformation is onto

From perspective (1) it is clear that we have another equivalent condition: the (coefficient) matrix is row equivalent to the identity matrix.

Further, if an $n \times n$ matrix A is invertible, then, for any b in \mathbb{R}^n , the matrix-vector equation Ax = b has a unique solution, namely $x = A^{-1}b$. Thus

A is invertible $\Rightarrow Ax = b$ has a unique solution for all b in $\mathbb{R}^n \Rightarrow A$ is row equivalent to \mathbb{R}^n

Elementary Matrices Activity

We notice: row reduction can be acheived by repeatedly applying elementary matrices. If A is an $n \times n$ matrix and $R_A = E_r \dots E_1 A$ is the reduced row echelon form of A, either $R_A = \mathbb{I}_n$ or R_A has an identity block in the upper left corner and zeros all below. If R_A is the identity matrix, then clearly $E_r \dots E_1$ is A^{-1} . (This gives us an algorithm for computing a matrix inverse!) On the other hand, if $R_A \neq \mathbb{I}_n$, then A is not invertible. Thus

A is row equivalent to $\mathbb{I}_n \Rightarrow A$ is invertible

Combined with the previous observations, we can conclude:

 $A \text{ is invertible} \iff A x = b \text{ has a unique solution for all } b \text{ in } \mathbb{R}^n$ $A \text{ is invertible} \iff (\text{and all translations of this statement in} \iff A \text{ is row equivalent to } \mathbb{I}_n$ (the other three perspectives)

Example Find the inverse of
$$A = \begin{bmatrix} 3 & 0 & 0 \\ -3 & -4 & 0 \\ 6 & 5 & -3 \end{bmatrix}$$
.

We row reduce A and apply the same actions to the identity matrix:

$$\begin{bmatrix} 3 & 0 & 0 & 1 & 0 & 0 \\ -3 & -4 & 0 & 0 & 1 & 0 \\ 6 & 5 & -3 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\text{add } R_1 \text{ to } R_2} \begin{bmatrix} 3 & 0 & 0 & 1 & 0 & 0 \\ 0 & -4 & 0 & 1 & 1 & 0 \\ 6 & 5 & -3 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\text{add } (-2)R_1 \text{ to } R_3} \begin{bmatrix} 3 & 0 & 0 & 1 & 0 & 0 \\ 0 & -4 & 0 & 1 & 1 & 0 \\ 0 & 5 & -3 & -2 & 0 & 1 \end{bmatrix} \xrightarrow{\text{add } (-5)R_2 \text{ to } R_3} \begin{bmatrix} 3 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & -3 & -1 & 1 & 1 \\ 0 & 5 & -3 & -2 & 0 & 1 \end{bmatrix} \xrightarrow{\text{add } (-5)R_2 \text{ to } R_3} \begin{bmatrix} 3 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & -3 & -1 & 1 & 1 \\ 0 & 0 & 12 & 3 & -5 & -4 \end{bmatrix}$$

$$\begin{array}{c} {}^{(1/12)R_3} \\ \xrightarrow{(1/12)R_3} \begin{bmatrix} 3 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & -3 & -1 & 1 & 1 \\ 0 & 0 & 1 & \frac{1}{4} & -\frac{5}{12} & -\frac{1}{3} \end{bmatrix} \\ \begin{array}{c} {}^{\text{add } 3R_3 \text{ to } R_2} \\ \xrightarrow{(1/12)R_3} \\ \xrightarrow{(1/12)R_3} \begin{bmatrix} 3 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -\frac{1}{4} & -\frac{1}{4} & 0 \\ 0 & 0 & 1 & \frac{1}{4} & -\frac{5}{12} & -\frac{1}{3} \end{bmatrix} \\ \begin{array}{c} {}^{(1/3)R_1} \\ \xrightarrow{(1/3)R_1} \\ \xrightarrow{(1$$

Thus,

$$A^{-1} = \begin{bmatrix} \frac{1}{3} & 0 & 0\\ -\frac{1}{4} & -\frac{1}{4} & 0\\ \frac{1}{4} & -\frac{5}{12} & -\frac{1}{3} \end{bmatrix} = \frac{1}{12} \begin{bmatrix} 4 & 0 & 0\\ -3 & -3 & 0\\ 3 & -5 & -4 \end{bmatrix}$$

Two more equivalent conditions:

A is invertible $\Leftrightarrow A^T$ is invertible

A is invertible $\Leftrightarrow A$ has a left inverse $\Leftrightarrow A$ has a right inverse