
Math 240, 7.1 Diagonalization of Symmetric Matrices A. DeCelles

1 Overview

Main ideas:

1. definition of symmetric matrix

2. Spectral Theorem: orthogonal diagonalization of symmetric matrices

3. spectral decomposition of a symmetric matrix

Examples in text:

1. examples of symmetric and non-symmetric matrices

2. diagonalizing a symmetric matrix; notice it is orthogonally diagonalizable

3. diagonalize a symmetric matrix, using the fact that it is orthogonally diagonalizable

4. spectrally decompose a matrix, given orthogonal diagonalization

2 Discussion and Worked Examples

2.1 Diagonalizing a symmetric matrix

Recall that a square matrix A is diagonalizable if there is an invertible matrix P and a (not necessarily
invertible) diagonal matrix D such that A = PDP−1.

More specifically, an n× n matrix A is diagonalizable if and only if its characteristic polynomial factors
into linear factors, and each eigenspace has dimension equal to the multiplicity of the corresponding
eigenvalue. In this case, the sum of the dimensions of its eigenspaces is n, so there is a basis for Rn
consisting of eigenvectors for A. We form the matrix P by letting its columns be the basis of eigenvectors.
The entries of the matrix D are the corresponding eigenvalues (in order).

To find the eigenvalues of a matrix A, find the roots of the characteristic equation det(A− λI) = 0. The
vectors v in Rn satisfying Av = λv form the eigenspace Vλ, and Vλ = null(A− λI). Thus row reduction of
(A− λI) can be used to find a basis for Vλ.

Activity: Diagonalizing a symmetric matrix.

Consider the symmetric matrix

A =


2 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


1. Compute the eigenvalues of A, and, for each distinct eigenvalue λ, find a basis for the corresponding

eigenspace Vλ.

2. For each pair λ and µ of distinct eigenvalues, compute the dot products of the basis vectors for Vλ
with the basis vectors for Vµ. What do you notice?

3. Normalize each eigenvector to be a unit vector, and let Q be the matrix whose columns are the unit
eigenvectors. Given your observation from (2), what kind of matrix is Q?

4. Given (3), how can you find Q−1 quickly (e.g. row reduction)? What are the implications for
diagonalizing A?
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The matrix A in this example is called symmetric because AT = A. We have seen that it is possible to
diagonalize A by orthogonal matrices. Such a matrix is called orthogonally diagonalizable. It turns out that
all symmetric matrices are orthogonally diagonalizable and no other matrices are orthogonally
diagonalizable.

Theorem (Spectral Theorem and Converse). Let A be an n× n symmetric matrix. Then

1. A has n real eigenvalues, counting multiplicities

2. The dimension of each eigenspace is equal to the multiplicity of the corresponding eigenvalue.

3. Eigenvectors corresponding to distinct eigenvalues are orthogonal.

i.e. A is orthogonally diagonalizable. Conversely, any orthogonally diagonalizable matrix is symmetric.

Proof. We prove only two parts of this theorem: first, that eigenvectors corresponding to distinct
eigenvalues are orthogonal, and second, that an orthogonally diagonalizable matrix is symmetric.

Let A be a symmetric matrix with distinct eigenvalues λ and µ and corresponding eigenvectors v and w,
respectively. Then

Av · w = vTATw = vTAw = v ·Aw

Thus λ v · w = µ v · w. Since λ 6= µ, we can conclude that v · w = 0.

Suppose B is an orthogonally diagonalizable matrix. Then there is an orthogonal matrix Q and a
diagonalizable matrix D such that B = QDQT . Then

BT =
(
QDQT

)T
=

(
QT
)T
DT QT = QDQT = B

Thus B is symmetric.

2.2 The Spectral Decomposition

Recall that one interpretation of diagonalizing a matrix is finding a basis with respect to which the linear
transformation acts by scalars. If a matrix A is diagonalizable, we can decompose Rn as the sum of the
eigenspaces. On each eigenspace A acts like a dilation by the corresponding eigenvalue.

When the eigenspaces are mutually orthogonal, this gives an orthogonal decomposition of Rn. Thus the
linear transformation can be written as a sum of linear transformations, each one of which can be described
as a projection onto an eigenvector followed by a scaling by the corresponding eigenvalue. In particular, if
{u1, . . . , un} is an orthonormal basis for Rn consisting of eigenvectors for a matrix A and if λ1, . . . , λn are
the corresponding eigenvalues, then

Av = λ1proju1
v + . . . + λnprojun

v

Notice that
proju1

v = (v · u1)u = (vTu1)u1 = (uT1 v)u1 = u1(uT1 v) = (u1u
T
1 )v

Thus the map v 7→ proju1
v has a matrix representation u1u

T
1 . This gives the spectral decomposition of A:

A = λ1(u1u
T
1 ) + . . . + λn(unu

T
n )

Example For the matrix A in the activity above, the spectral decomposition is
2 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 +


0 0 0 0
0 0 0 0
0 0 1 1
0 0 1 1

 + 2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 −


0 0 0 0
0 0 0 0
0 0 1 −1
0 0 −1 1


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