
Math 240, Orthogonal Sets A. DeCelles

1 Overview

Main ideas:

1. definition of orthogonal set; thm: linear independence of orthogonal set; definition of an orthogonal
basis, orthogonal decomposition of a vector, definition of orthogonal projection

2. orthonormal set, orthonormal basis

3. matrices whose columns are orthonormal sets, orthogonal matrices, isometries!

Examples in text:

1. show that a given set of three vectors in R3 is an orthogonal set

2. orthogonal decomposition of a vector in R3

3. orthogonal projection of a vector in R2 onto another vector in R2

4. distance from a point to a line

5. verify that a given set is an orthonormal basis of R3

6. verify that a given matrix with orthonormal columns perserves lengths of vectors

7. an orthogonal matrix

2 Discussion and Worked Examples

2.1 Orthogonality, Linear Independence, and Decompositions

If each pair of vectors in a set of vectors is orthogonal, then the set of vectors is said to be orthogonal.

Example Determine whether the following set of vectors is orthogonal.
 1
−2
1

 ,

0
1
2

 ,

−5
−2
1


Let v1, v2, and v3 denote the vectors listed above, in that order. Then we can compute

v1 · v2 = 0− 2 + 2 = 0

v1 · v3 = −5 + 4 + 1 = 0

v2 · v3 = 0− 2 + 2 = 0

Thus {v1, v2, v3} is an orthogonal set.

Theorem. An orthogonal set of nonzero vectors is linearly independent.

Proof. Suppose {v1, . . . , vn} is orthogonal, and c1, . . . cn are weights such that

c1v1 + . . . + cnvn = 0

Taking the dot product of both sides with v1 and using bilinearity yields

c1〈v1, v1〉 + c2〈v2, v1〉 + . . . + cn〈vn, v1〉 = 〈0, v1〉 = 0

Since v1 is orthogonal to all of the other vectors in the given set, this reduces to

c1‖v1‖2 = 0

Since v1 6= 0, c1 = 0. Similarly ci ‖vi‖2 = 0 and thus ci = 0 for all 1 ≤ i ≤ n. Thus {v1, . . . , vn} is linearly
independent.
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Of course, not every linearly independent set is orthogonal; an orthogonal set is a special kind of linearly
independent set. If a basis for Rn is orthogonal it is called an orthogonal basis. Orthogonal bases are very
convenient, because there is a nice formula for expressing a vector as a linear combination of orthogonal
vectors (i.e. finding coordinates relative to an orthogonal basis).

Suppose {w1, . . . , wn} is an orthogonal basis for a subspace W of Rn. We wish to write w in W in terms of
this basis.

w = c1 w1 + . . . + cn wn

Taking the dot product of both sides with w1, yields

〈w,w1〉 = c1 〈w1, w1〉+ 0

Thus, c1 = 〈w,w1〉/〈w1, w1〉. We can find the other weights in the same way. Thus, we have derived the
following result.

Theorem. Let {w1, . . . , wn} be an orthogonal basis for a subspace W of Rn. Let w be a vector in W . Then,

w =
〈w,w1〉
〈w1, w1〉

w1 + . . . +
〈w,wn〉
〈wn, wn〉

wn

We say that this is a decomposition of w with respect to the basis {w1, . . . , wn}. The terms are called
components of w with respect to {w1, . . . , wn} and the weights 〈w,wi〉/〈wi, wi〉 are called decomposition
coefficients. Notice that the components are precisely the projections of w onto the basis vectors. If we
normalize the basis (i.e. scale each vector in the basis by the reciprocal of its length), the decomposition is
even simpler:

w = 〈w, ŵ1〉 ŵ1 + . . . + 〈w, ŵn〉 ŵn

This is why a normalized orthogonal basis, called an orthonormal basis, is convenient. The standard basis
for Rn is an orthonormal basis.

Example Write the vector v = (1, 1, 1) as a linear combination of the vectors in the previous example.

The set of vectors in the previous example is an orthogonal basis for R3. (The fact that the set is
orthogonal implies that it is linearly independent, and any set of three linearly independent vectors in R3

spans R3 and is a basis for R3.) Thus there are weights such that v = c1v1 + c2v2 + c3v3. By the
orthogonal decomposition theorem, we can compute the weights using ratios of dot products:

c1 =
v · v1
v1 · v1

=
1− 2 + 1

1 + 4 + 1
= 0

c2 =
v · v2
v2 · v2

=
0 + 1 + 2

0 + 1 + 5
=

3

5

c3 =
v · v3
v3 · v3

=
−5− 2 + 1

25 + 4 + 1
= −1

5

Thus, 1
1
1

 = 0

 1
−2
1

 +
3

5

0
1
2

 − 1

5

−5
−2
1


Example Normalize the vectors v1, v2, and v3 to obtain an orthonormal basis for R3. Then decompose
v = (1, 1, 1) and w = (1, 0, 2) with respect to the orthonormal basis.
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To normalize the vectors, we simply scale by the reciprocals of the lengths:

v̂1 =

 1/
√

6

−2/
√

6

1/
√

6

 v̂2 =

 0

1/
√

5

2/
√

5

 v̂3 =

−5/
√

30

−2/
√

30

1/
√

30


The decompositions coefficients for v with respect to the orthonormal basis are 〈v, v̂i〉, so

v =

1
1
1

 = 0

 1/
√

6

−2/
√

6

1/
√

6

 +
3√
5

 0

1/
√

5

2/
√

5

 − 6√
30

−5/
√

30

−2/
√

30

1/
√

30


Similarly,

w =

1
0
2

 =
3√
6

 1/
√

6

−2/
√

6

1/
√

6

 +
4√
5

 0

1/
√

5

2/
√

5

 − 3√
30

−5/
√

30

−2/
√

30

1/
√

30


Example Compute the dot product of the vectors v and w from the previous example in two ways: first
using their standard coordinates and second using their decompositions in terms of the orthonormal basis
in the previous example.

Using standard coordinates:

〈v, w〉 = (1, 1, 1) · (1, 0, 2) = 1 + 0 + 2 = 3

Using the orthogonal decompositions with respect to {v1, v2, v3},

〈v, w〉 =
(
0 v̂1 + (3/

√
5)v̂2 + (−6/

√
30)v̂3

)
·
(
(3/
√

6)v̂1 + (4/
√

5)v̂2 + (−3/
√

30)v̂3
)

We take advantage of the fact that v̂1 · v̂2 = 0, v̂1 · v̂3 = 0, and v̂2 · v̂3 = 0 (so v̂i · v̂j = 0 when i 6= j) and
v̂i · v̂i = 1. Thus,

〈v, w〉 = 0 + 12/5 + 18/30 = 3

2.2 Orthogonal Matrices

Since matrix multiplication can be computed by taking dot products of rows with columns, one might
suppose that something interesting will happen when we take a matrix whose columns are an orthogonal
set and multiply on the left by its transpose.

Let A be the matrix whose columns are the vectors v1, v2, v3 from above. Multiplying on the left by the
transpose yields:

AT A =

 1 −2 1
0 1 2
−5 −2 1

 1 0 −5
−2 1 −2
1 2 1

 =

6 0 0
0 5 0
0 0 30


This is the diagonal matrix whose entries are the norms-squared of the vectors v1, v2 and v3. This is
because when we perform the matrix multiplication we are taking the dot products of pairs of vectors in
the set {v1, v2, v3}.

If the columns of a matrix are an orthonormal set, the norm-squared of each column (considered as a
vector) is one. For example, let U be the matrix whose columns are v̂1, v̂2, and v̂3, from the examples
above. Then

UTU =

 1/
√

6 −2/
√

6 1/
√

6

0 1/
√

5 2/
√

5

−5/
√

30 −2/
√

30 1/
√

30

 1/
√

6 0 −5/
√

30

−2/
√

6 1/
√

5 −2/
√

30

1/
√

6 2/
√

5 1/
√

30

 =

1 0 0
0 1 0
0 0 1


Thus if U is a matrix whose columns are an orthonormal set, UTU = I. The converse is also true, since
the matrix product UTU being equal to the identity matrix means that: 〈ui, ui〉 = 1 and 〈ui, uj〉 = 0 if
i 6= j. This is summarized in the following theorem.
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Theorem. A matrix has orthonormal columns if and only if its transpose is its inverse

A square matrix whose columns are an orthonormal basis for Rn is called an orthogonal matrix.
Non-square matrices whose columns are an orthonormal set also have some nice properties, but there is no
particular term for such matrices.

(Recall that matrices whose transposes are their inverses play a role in the singular value decomposition
discussed in the exercises of Section 2.5.)

Recall that matrix-vector multiplication can be interpreted as taking a linear combination of the columns
of the matrix, with the entries of the vectors as weights. Thus we may interpret the orthogonal
decompositions of the vectors v and w in the example above as matrix vector products:

v =

1
1
1

 = 0

 1/
√

6

−2/
√

6

1/
√

6

 +
3√
5

 0

1/
√

5

2/
√

5

 − 6√
30

−5/
√

30

−2/
√

30

1/
√

30

 =

 1/
√

6 0 −5/
√

30

−2/
√

6 1/
√

5 −2/
√

30

1/
√

6 2/
√

5 1/
√

30

 0

3/
√

5

−6/
√

30



w =

1
0
2

 =
3√
6

 1/
√

6

−2/
√

6

1/
√

6

 +
4√
5

 0

1/
√

5

2/
√

5

 − 3√
30

−5/
√

30

−2/
√

30

1/
√

30

 =

 1/
√

6 0 −5/
√

30

−2/
√

6 1/
√

5 −2/
√

30

1/
√

6 2/
√

5 1/
√

30

 3/
√

6

4/
√

5

−3/
√

30


Letting x = (c1, c2, c3) be the vector whose entries are the weights for the orthogonal decomposition of v
with respect to {v1, v2, v3} and letting y = (d1, d2, d3) be the vector whose entries are the weights for the
orthogonal decomposition of w, we can rewrite the above observations as

v = Ux and w = Uy

Thus, as computed explicitly above,

Ux · Uy = v · w =
(
c1v̂1 + c2v̂2 + c3v̂3

)
·
(
d1v̂1 + d2v̂2 + d3v̂3

)
= c1d2 + c2d2 + c3d3 = x · y

It turns out that this is true generally: when the columns of an m× n matrix U are an orthonormal set,
then Ux · Uy = x · y for all vectors x and y in Rn. Since the dot product is the key to lengths, distances,
and orthogonality, the fact that the map x 7→ Ux preserves the dot product implies that it also preserves
lengths, distances, and orthogonality.

Theorem. Let U be an m× n matrix with orthonormal columns. Then the linear transformation x 7→ Ux
preserves the inner product in the following sense: Ux · Uy = x · y for all x and y in Rn. Thus the linear
transformation preserves length, distance, and orthogonality, i.e.

1. ‖Ux‖ = ‖x‖ i.e. the length of x is the same as the length of its image Ux

2. ‖Ux− Uy‖ = ‖x− y‖, i.e. the distance between two vectors x and y is the same as the distance
between their images Ux and Uy

3. Ux · Uy = 0 ⇔ x · y = 0, i.e. the vectors x and y are orthogonal if and only if their images Ux and
Uy are orthogonal.

For example, if we consider linear transformations of the plane, the linear transformations that preserve the
dot product are precisely the linear transformations that are rigid motions, i.e. rotations and reflections.
Since dilations, expansions, shears, and projections “stretch,” “shrink,” or “collapse” the plane they do not
preserve distances or angles.
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