1 Overview

Main ideas:

- 1. vectors in \mathbb{R}^2 and \mathbb{R}^3 (definition as ordered list, geometric description)
- 2. addition, scalar multiplication (algebraically, geometrically)
- 3. linear combinations of vectors, the span of a set of vectors
- 4. vector equations, applications

Examples in text:

- 1. arithmetic with vectors
- 2. addition of vectors in \mathbb{R}^2 , geometrically (parallelogram rule)
- 3. geometric description of scalar multiples of a vector
- 4. geometric description of various linear combinations of two vectors
- 5. determine whether a given vector in \mathbb{R}^2 is a linear combination of two specified vectors
- 6. determine whether a given vector in \mathbb{R}^3 is in the span of two specified vectors in \mathbb{R}^3
- 7. using a vector equation in an application (we will omit this for now)

2 Discussion

Goal for 1.3 and 1.4: Develop a matrix-vector viewpoint for linear systems.

Activity: linear combinations worksheet in groups of three

- 1. compute a linear combination (draw a picture to check!)
- 2. express a vector as a linear combination of two others (notice: solving a linear system!)
- 3. impossibility of expressing a vector as a linear combination of two specified vectors (what goes wrong in this example? notion of span)

Main Insight: We can rewrite a linear system as a vector equation, in which the coefficients of the linear system are column vectors and the variables of the linear system are coefficients in the vector equation:

4x	_	2y	+	z	=	20		$\begin{pmatrix} 4 \end{pmatrix}$	+ y	$\left(-2\right)$		$\begin{pmatrix} 1 \end{pmatrix}$		$\left(\begin{array}{c} 20 \end{array}\right)$	
		6y	+	3z	=	0	x	0	+ y	6	+ z	3	=	0	
-12x	+	6y	+	2z	=	-40		(-12)		6		2		$\left(-40\right)$	

Thus, asking whether a given linear system has a solution is equivalent to asking whether a given vector (the rightmost column of the augmented matrix) lies in the span of a specified set of vectors (the other columns of the augmented matrix).