
Math 301, Unit 1, Corrections and Modifications for Students

Section 1.2

Theorem 1.5 The theorem should say, “Every Pythagorean triple (a, b, c) is similar to a Pythagorean
triple of the form (q2 − p2, 2qp, q2 + p2), where p and q are positive integers with q > p > (

√
2− 1)q.”

Exercise 1.19(i) The answer should be q = 4, p = 3.

Exercise 1.22 Assume also that the point Q is in the first quadrant.

Exercise 1.31 This is a challenging problem. First show that there are no positive rational numbers x
and y so thtat x4 + 1 = y2, using Theorem 1.7. To prove that there are no positive rational numbers x and
y so that x4 − 1 = y4, you will need to prove an analogous result to Theorem 1.7, namely that there is no
triple (x, y, z) of positive integers with x4 − y4 = z2.

Exercise 1.33 Use the fact that 1 and 2 are not congruent numbers.

Theorem 1.9 Near the end of the proof, the sentence beginning with “When we clear denominators . . . ”
should say, “When we clear denominators, we get a4 + 24c4 = (ab)2, . . . ”

Theorem 1.11 The phrase “if and only of” should be replaced by “if and only if.” Also (as is made
clear by the discussion preceding the theorem), the perfect squares in the arithmetic sequence are perfect
rational squares, namely squares of rational numbers, not necessarily squares of integers.

Section 1.3

How to Think About It, p 34 After the computation, in the second sentence, in which the gcd, 4, is
being written as a linear combination of 124 and 1028, the 0 digit is omitted from 1028.

Exercise 1.41(i) This is a challenging problem. Start by trying several examples. For example, try
a = 5, b = 23, then a = 5, b = −23, and a = −5, b = 23, and finally a = −5, b = 23.

Exercise 1.49 Study the proof of Theorem 1.19 and make a similar argument. Define a subset C of I to
be the set of positive elements in I, and let d be the smallest element in C. Then prove that all other
elements of I are multiples of d. As in the case of Theorem 1.19, there is also a trivial case, which needs to
be treated separately.

Section 2.1

Proposition 2.7 The proof of (i) is faulty; it shows that am+n = am+n, which is obviously not what is
intended. The first three steps of the proof are fine, but it should finish as follows:
am−nana = am−naan = aman.

Exercise 2.4 Modify to say, “If a is positive and a 6= 1, give two proofs that

1 + a + a2 + . . . + an =
an+1 − 1

a− 1

by induction on n ≥ 0 and by multiplying the left-hand expression by (a− 1).”

Exercise 2.8 The point of this exercise is to show that the two different ways of defining the factorial of
a number are in fact equivalent. In your proof you should use the notation n! to refer to the factorial as
defined in the text (page 51), then use induction prove that n! is always equal to 1 · 2 · 3 · · · · · n.

Exercise 2.12(i) Modify the problem to say, “Prove that an integer a ≥ 2 is a perfect square if and only
if whenever p is a prime and p|a, the highest power of p that divides a is an even power of p.”
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Section 2.2

Lemma 2.23 The formula for
(
n
r

)
should say that

(
n
r

)
= 1 if r = 0 or r = n (not, as is stated, if n = 0 or

n = r.)

Example 2.27 In the expansion of (a+ b)4, the last term should be +6(ab)2, not −6(ab)2. Hence the
last term in the expression for a4 + b4 should be −6(ab)2.

Section 3.2

Proposition 3.14 At the end of the proof, it is stated that sin θ = a
|z| , but it should say that sin θ = b

|z| .

Corollary 3.19 The imaginary unit is missing in the definitions of z and w. The corollary should begin,
“If z = |z|(cosα+ i sinα) and w = |w|(cosβ + i sinβ), then z · w = . . . ”

Exercise 3.23 The imaginary unit is missing from the formula for z − z̄. The exercise should say, “If
z ∈ C show that z + z̄ = 2(Rz) and z − z̄ = 2(Iz) · i.”

Exercise 3.39 The sentence should begin “Let n ≥ 0 be an integer . . . ”.

Exercise 3.42 The integer n should be positive, not merely nonnegative. Also, in part (i) of the
question, there is unnecessary repitition of the definition of ζ.

Section 3.3

Example 3.31 As stated, the 8th roots of unity are shown in Figure 3.7. Notice that there are eight of
them. The four primitive 8th roots of unity are listed: cos( 2π

8 ) + i sin( 2π
8 ), cos( 6π

8 ) + i sin( 6π
8 ),

cos( 10π
8 ) + i sin( 10π

8 ), and cos( 14π
8 ) + i sin( 14π

8 ).

Theorem 3.32(i) The term ζ is missing from the left-hand side of the equation. The equation should be
1 + ζ + ζ2 + ζ3 + · · ·+ ζn−1 = 0. Also, for this to be true, we need ζ 6= 1. The rest of the theorem holds
for any nth root of unity ζ, including ζ = 1.

Exercise 3.56 In this exercise you will construct a cubic polynomial with “nice” real coefficients that
has three non-obvious real roots. This is similar to Example 3.34, which constructs a quadratic polynomial.
Both this exercise and the example use Exercise 3.23 (that the sum of a complex number and its conjugate
is real) and Theorem 3.32 (especially that the nth roots of unity sum to zero: make sure you are using the
corrected version of this theorem, stated above). Exercise 3.15 will be helpful for the last part of this
exercise.
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