Definition. Let *D* be a domain, and let $X = \{(a, b) : a, b \in D, b \neq 0\}$. Define a relation \equiv on *X* by: $(a, b) \equiv (c, d)$ if and only if ad = bc. This is an equivalence relation (Lemma 5.4). For $(a, b) \in X$, let [a, b] denote the equivalence class of (a, b), i.e.

$$[a,b] = \{(c,d) \in X : (a,b) \equiv (c,d)\} = \{(c,d) : c,d \in D, d \neq 0, ad = bc\}$$

Define the fraction field of D, denoted $\operatorname{Frac}(D)$ to be the set of equivalence classes of elements of X:

$$Frac(D) = \{[a, b] : (a, b) \in X\} = \{[a, b] : a, b \in D, b \neq 0\}$$

We define addition and multiplication on Frac(D) by [a, b] + [c, d] = [ad + bc, bd] and $[a, b] \cdot [c, d] = [ac, bd]$. These operations are well-defined (Theorem 5.5(i)).

With the addition and multiplication as defined above, the fraction field of a domain is a field, with the additive identity being [0, 1], the multiplicative identity being [1, 1], the additive inverse of an element [a, b] being [-a, b], and the multiplicative inverse of an element [a, b] being [b, a] (Theorem 5.5(i)).

Identifying $a \in D$ with the equivalence class $[a, 1] \in \operatorname{Frac}(D)$, we consider D to be a subring of $\operatorname{Frac}(D)$. Since D is not literally a subset of $\operatorname{Frac}(D)$, it cannot literally be a subring of $\operatorname{Frac}(D)$. To be precise we should say that D is *isomorphic* to the subset $D' = \{[a, 1] : a \in D\}$ of $\operatorname{Frac}(D)$, which is, literally, a subring of $\operatorname{Frac}(D)$ (Theorem 5.5(ii)).

Example 1. We can construct \mathbb{Q} from \mathbb{Z} in this way, since \mathbb{Z} is a domain. If we define $\mathbb{Q} = \operatorname{Frac}(\mathbb{Z})$, then \mathbb{Z} is not literally a subset of \mathbb{Q} , since \mathbb{Q} consists of equivalence classes of certain pairs of integers. In practice, however, we usually choose not to distinguish between \mathbb{Z} and its isomorphic copy $\{[a, 1] : a \in \mathbb{Z}\}$ inside \mathbb{Q} .

Example 2. What is $Frac(\mathbb{Q})$? According to the definition,

$$Frac(\mathbb{Q}) = \{ [r, s] : r, s, \in \mathbb{Q}, s \neq 0 \} \text{ where } [r, s] = \{ (r', s') : r', s' \in \mathbb{Q}, s' \neq 0, \text{ and } rs' = sr' \}$$

Let (r, s) with $r, s \in \mathbb{Q}$ and $s \neq 0$. We claim that $(r, s) \equiv (t, 1)$, for some $t \in \mathbb{Q}$, namely $t = s^{-1}r$. To prove this, we show $r \cdot 1 = s \cdot t$, as follows:

$$r \cdot 1 = 1 \cdot r = (s \cdot s^{-1})r = s \cdot (s^{-1}r) = s \cdot t.$$

Thus, for any $[r, s] \in \operatorname{Frac}(\mathbb{Q})$, there is an element $t \in \mathbb{Q}$ such that [r, s] = [t, 1]. This shows that every element of $\operatorname{Frac}(\mathbb{Q})$ is contained in the set $\{[t, 1] : t \in \mathbb{Q}\}$, which is the isomorphic copy of \mathbb{Q} inside $\operatorname{Frac}(\mathbb{Q})$. Of course, $\{[t, 1] : t \in \mathbb{Q}\} \subset \operatorname{Frac}(\mathbb{Q})$, by definition, so we have shown that $\operatorname{Frac}(\mathbb{Q}) = \{[t, 1] : t \in \mathbb{Q}\}$, i.e. the fraction field of \mathbb{Q} is (isomorphic to) \mathbb{Q} itself.

Note. The above argument works with \mathbb{Q} replaced by any field; thus the fraction field of a field k is (isomorphic to) k itself. This should not be surprising, since the construction of $\operatorname{Frac}(D)$ from a domain D amounts to constructing reciprocals (well, multiplicative inverses) for every element of D.

Example 3. What is $\operatorname{Frac}(\mathbb{Z}[i])$? According to the definition,

 $\mathrm{Frac}(\mathbb{Z}[i]) \ = \ \{[z,w]: z,w \in \mathbb{Z}[i], w \neq 0\} \quad \text{ where } \quad [z,w] \ = \ \{[z',w']: z',w' \in \mathbb{Z}[i], w' \neq 0, \text{ and } zw' = wz'\}$

We might guess that $\operatorname{Frac}(\mathbb{Z}[i]) = \mathbb{Q}(i)$, where $\mathbb{Q}(i) = \{r + si : r, s \in \mathbb{Q}\}$. We will show that this is, in fact, true, as long as we're willing to identify elements of $\mathbb{Q}(i)$ with equivalence classes of pairs of Gaussian integers (just as we identify rational numbers with equivalence classes of pairs of integers.)

Since multiplication in $\mathbb{Z}[i]$ is the multiplication defined on \mathbb{C} , by Theorem 5.5(iii), we can identify $\operatorname{Frac}(\mathbb{Z}[i])$ with the following subset of \mathbb{C} :

$$\left\{\frac{z}{w}: z, w \in \mathbb{Z}[i], w \neq 0\right\}$$

Take any $z, w \in \mathbb{Z}[i]$. Then z = a + bi and w = c + di for some $a, b, c, d \in \mathbb{Z}$, and

$$\frac{z}{w} = \frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{c^2+d^2} = \frac{(ac+bd)+(bc-ad)i}{c^2+d^2} = \left(\frac{ac+bd}{c^2+d^2}\right) + \left(\frac{bc-ad}{c^2+d^2}\right)i \in \mathbb{Q}(i)$$

On the other hand, if $r + si \in \mathbb{Q}(i)$, then r = p/q for some $p, q \in \mathbb{Z}$ and s = p'/q' for some $p', q' \in \mathbb{Z}$, and

$$r + si = \left(\frac{p}{q}\right) + \left(\frac{p'}{q'}\right)i = \left(\frac{pq'}{qq'}\right) + \left(\frac{p'q}{qq'}\right)i = \frac{(pq)' + (p'q)i}{qq'}$$

where both the numerator (pq)' + (p'q)i and denominator qq' are in $\mathbb{Z}[i]$.

Thus, we have the following equality of subsets of \mathbb{C} :

$$\left\{\frac{z}{w}: z, w \in \mathbb{Z}[i], w \neq 0\right\} = \{r+si: r, s \in \mathbb{Q}\} = \mathbb{Q}(i)$$

and we can identify $\operatorname{Frac}(\mathbb{Z}[i])$ with $\mathbb{Q}(i)$.

Exercise 5.6(ii) Is $\operatorname{Frac}(\mathbb{Z}[i]) = \{[r+si, 1] : r, s \in \mathbb{Q}\}$? Yes and no.

This is formally incorrect, because for [r + si, 1] to be in $\operatorname{Frac}(\mathbb{Z}[i])$, we would need $r + si \in \mathbb{Z}[i]$, which is not necessarily the case.

However, as discussed in Example 3, above, $\operatorname{Frac}(\mathbb{Z}[i])$ can be identified with $\mathbb{Q}(i)$, and, by the note after Example 1, above, since $\mathbb{Q}(i)$ is a field, $\operatorname{Frac}(\mathbb{Q}(i)) = \{[r+si,1] : r, s \in \mathbb{Q}\}$, which can also be identified with $\mathbb{Q}(i)$. Thus, although formally $\operatorname{Frac}(\mathbb{Z}[i])$ is not equal to $\{[r+si,1] : r, s \in \mathbb{Q}\}$, both sets can be identified with $\mathbb{Q}(i)$, so the two sets can be identified with each other.